COURSE CURRICULAM

MASTER OF COMPUTER APPLICATIONS (MCA)

(Two-Year Full-Time Programme)

INSTITUTE OF MANAGEMENT AND RESEARCH

8th Milestone, Delhi-Meerut Road, Ghaziabad <u>www.imrghaziabad.ac.in</u> 7503022011, 7503045604

DR. A.P.J. ABDUL KALAM TECHNICAL UTTAR PRADESH, UNIVERSITY, LUCKNOW

EVALUATION SCHEME & SYLLABUS First Year FOR

MASTER OF COMPUTER APPLICATION (MCA) (Two Year Course)

As per AICTE MODEL CURRICULUM (Effective from the Session: 2020-21)

MCA (MASTER OF COMPUTER APPLICATION) MCA FIRST YEAR, 2020-21

SEMESTER-I

S.No	Subject	Subject Name	Per	iods			Sessional			Total	Credit
	Code		L	T	P	CT	TA	Total			
1.	KCA101	Fundamental of Computers & Emerging Technologies	3	0	0	30	20	50	100	150	3
2.	KCA102	Problem Solving using C	3	1	0	30	20	50	100	150	4
3.	KCA103	Principles of Management & Communication	3	0	0	30	20	50	100	150	3
4.	KCA104	Discrete Mathematics	3	0	0	30	20	50	100	150	3
5.	KCA105	Computer Organization & Architecture	3	1	0	30	20	50	100	150	4
6.	KCA151	Problem Solving using C Lab	0	0	4	30	20	50	50	100	2
7.	KCA152	Computer Organization & Architecture Lab	0	0	3	30	20	50	50	100	2
8.	KCA153	Professional Communication Lab	0	0	2	30	20	50	50	100	2
		Total								1050	23

CT: Class Test TA: Teacher Assessment

L/T/P: Lecture/ Tutorial/ Practical

SEMESTER-II

S.No	Subject	Subject Name	Per	iods			Sessional		ESE	Total	Credit
	Code		L	T	P	CT	TA	Total			
1.	KCA201	Theory of Automata &	3	0	0	30	20	50	100	150	3
		Formal Languages									
2.	KCA202	Object Oriented Programming	3	1	0	30	20	50	100	150	4
3.	KCA203	Operating Systems	3	0	0	30	20	50	100	150	3
4.	KCA204	Database Management	3	0	0	30	20	50	100	150	3
		Systems									
5.	KCA205	Data Structures & Analysis of	3	1	0	30	20	50	100	150	4
		Algorithms									
6.	KCAA01	Cyber Security*	2	0	0	30	20	50	100	150	0
7.	KCA251	Object Oriented Programming	0	0	3	30	20	50	50	100	2
		Lab									
8.	KCA252	DBMS Lab	0	0	3	30	20	50	50	100	2
9.	KCA253	Data Structures & Analysis of	0	0	4	30	20	50	50	100	2
		Algorithms Lab									
		Total								1200	23

CT: Class Test TA: Teacher Assessment

L/T/P: Lecture/ Tutorial/ Practical

^{*} Qualifying Non-credit Course

Syllabus

MCA 1st Year Ist Semester

MCA (MASTER OF COMPUTER APPLICATION) FIRST YEAR SYLLABUS **SEMESTER-I**

KCA101	1: FUNDAMENTAL OF COMPUTERS & EMERGING TECHNOL	LOGIES
	Course Outcome (CO) Bloom's Knowledge Level (KL)	
	At the end of course , the student will be able to	
CO 1	Demonstrate the knowledge of the basic structure, components, features and generations of computers.	K_1, K_2
CO 2	Describe the concept of computer languages, language translators and construct algorithms to solve problems using programming concepts.	K_{2}, K_{3}
CO 3	Compare and contrast features, functioning & types of operating system and computer networks.	K ₄
CO 4	Demonstrate architecture, functioning & services of the Internet and basics of multimedia.	K ₂
CO 5	Illustrate the emerging trends and technologies in the field of Information Technology.	K ₁ , K ₂
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
I	Introduction to Computer: Definition, Computer Hardware & Computer Software	
	Components: Hardware – Introduction, Input devices, Output devices, Central Processing Unit, Memory- Primary and Secondary. Software - Introduction, Types – System and Application.	
	Computer Languages: Introduction, Concept of Compiler, Interpreter & Assembler Problem solving concept: Algorithms – Introduction, Definition, Characteristics, Limitations, Conditions in pseudo-code, Loops in pseudo code.	08
П	Operating system: Definition, Functions, Types, Classification, Elements of command based and GUI based operating system. Computer Network: Overview, Types (LAN, WAN and MAN), Data communication, topologies.	08
III	Internet: Overview, Architecture, Functioning, Basic services like WWW, FTP, Telnet, Gopher etc., Search engines, E-mail, Web Browsers. Internet of Things (IoT): Definition, Sensors, their types and features, Smart Cities, Industrial Internet of Things.	08
IV	Block chain: Introduction, overview, features, limitations and application areas fundamentals of Block Chain. Crypto currencies: Introduction, Applications and use cases Cloud Computing: It nature and benefits, AWS, Google, Microsoft & IBM Services	08
V	Emerging Technologies: Introduction, overview, features, limitations and application areas of Augmented Reality, Virtual Reality, Grid computing, Green computing, Big data analytics, Quantum Computing and Brain Computer Interface	08

- 1. Rajaraman V., "Fundamentals of Computers", Prentice-Hall of India.
- 2. Norton P., "Introduction to Computers", McGraw Hill Education.

- Goel A., "Computer Fundamentals", Pearson.
 Balagurusamy E., "Fundamentals of Computers", McGraw Hill
 Thareja R., "Fundamentals of Computers", Oxford University Press.
- 6. Bindra J., "The Tech Whisperer- on Digital Transformation and the Technologies that Enable it", Penguin

	KCA102 :PROBLEM SOLVING USING C	
	Course Outcome (CO) Bloom's Knowledge	Level (KL)
	At the end of course, the student will be able to	
CO 1	Describe the functional components and fundamental concepts of a digital computer system including number systems.	K_1, K_2
CO 2	Construct flowchart and write algorithms for solving basic problems.	K_2, K_3
CO 3	Write 'C' programs that incorporate use of variables, operators and expressions along with data types.	K ₂ , K ₃
CO 4	Write simple programs using the basic elements like control statements, functions, arrays and strings.	K ₂ , K ₃
CO 5	Write advanced programs using the concepts of pointers, structures, unions and enumerated data types.	K ₂ , K ₃
CO 6	Apply pre-processor directives and basic file handling and graphics operations in advanced programming.	K ₂ , K ₃
	DETAILED SYLLABUS	3-1-0
Unit	Topic	Proposed Lecture
I	Basics of programming: Approaches to problem solving, Use of high level programming language for systematic development of programs, Concept of algorithm and flowchart, Concept and role of structured programming. Basics of C: History of C, Salient features of C, Structure of C Program, Compiling C Program, Link and Run C Program, Character set, Tokens, Keywords, Identifiers, Constants, Variables, Instructions, Data types, Standard Input/Output, Operators and expressions.	08
П	Conditional Program Execution: if, if-else, and nested if-else statements, Switch statements, Restrictions on switch values, Use of break and default with switch, Comparison of switch and if-else. Loops and Iteration: for, while and do-while loops, Multiple loop variables, Nested loops, Assignment operators, break and continue statement. Functions: Introduction, Types, Declaration of a Function, Function calls, Defining functions, Function Prototypes, Passing arguments to a function Return values and their types, Writing multifunction program, Calling function by value, Recursive functions.	08
III	Arrays: Array notation and representation, Declaring one-dimensional array, Initializing arrays, Accessing array elements, Manipulating array elements, Arrays of unknown or varying size, Two-dimensional arrays, Multidimensional arrays. Pointers: Introduction, Characteristics, * and & operators, Pointer type declaration and assignment, Pointer arithmetic, Call by reference, Passing pointers to functions, arrayof pointers, Pointers to functions, Pointer to pointer, Array of pointers. Strings: Introduction, Initializing strings, Accessing string elements, Array of strings, Passing strings to functions, String functions.	08

IV	Structure: Introduction, Initializing, defining and declaring structure, Accessing members, Operations on individual members, Operations on structures, Structure within structure, Array of structure, Pointers to structure. Union: Introduction, Declaring union, Usage of unions, Operations on union. Enumerated data types Storage classes: Introduction, Types- automatic, register, static and external.	08
V	Dynamic Memory Allocation : Introduction, Library functions – malloc, calloc, realloc and free.	08
	File Handling: Basics, File types, File operations, File pointer, File opening modes, File handling functions, File handling through command	
	line argument, Record I/O in files.	
	Graphics: Introduction, Constant, Data types and global variables used	
	in graphics, Library functions used in drawing, Drawing and filling images, GUI interaction within the program.	

- 1. Kanetkar Y., "Let Us C", BPB Publications.
- 2. Hanly J. R. and Koffman E. B., "Problem Solving and Program Design in C", Pearson Education.
- 3. Schildt H., "C- The Complete Reference", McGraw-Hill.
- 4. Goyal K. K. and Pandey H.M., Trouble Free C", University Science Press
- 5. Gottfried B., "Schaum's Outlines- Programming in C", McGraw-Hill Publications.
- 6. Kochan S.G., "Programming in C", Addison-Wesley.
- 7. Dey P. and Ghosh M., "Computer Fundamentals and Programming in C", Oxford University Press.
- 8.Goyal K. K., Sharma M. K. and Thapliyal M. P. "Concept of Computer and C Programming", University Science Press.

	KCA103 : Principles of Management & Communication				
	Course Outcome (CO) Bloom's Knowledge Level (KL))			
	At the end of course, the student will be able to				
CO 1	Describe primary features, processes and principles of management.	K_1, K_2			
CO 2	Explain functions of management in terms of planning, decision making and organizing.	K_3, K_4			
CO 3	Illustrate key factors of leadership skill in directing and controlling business resources and processes.	K_5, K_6			
CO 4	Exhibit adequate verbal and non-verbal communication skills	K_1, K_3			
CO 5	Demonstrate effective discussion, presentation and writing skills.	K_3, K_5			
	DETAILED SYLLABUS	3-0-0			
Unit	Торіс	Proposed			
		Lecture			
I	Management : Need, Scope, Meaning and Definition. The process of Management, Development of Management thought F.W. Taylor and Henry Fayol, Horothorne Studies, Qualities of an Efficient Management.	08			
П	Planning & Organising: Need, Scope and Importance of Planning, Steps in planning, Decision making model. Organising need and Importance, Organisational Design, Organisational structure, centralisation and Decentralisation, Deligation.	08			
Ш	Directing & Controlling: Motivation—Meaning, Importance, need. Theories of Motivation, Leadership—meaning, need and importance, leadership style, Qualities of effective leader, principles of directing, Basic control process, Different control Techniques.	08			
IV	Introduction to Communication: What is Communication, Levels of communication, Barriers to communication, Process of Communication, Non-verbal Communication, The flow of Communication: Downward, Upward, Lateral or Horizontal (Peer group) Communication, Technology Enabled communication, Impact of Technology, Selection of appropriate communication Technology, Importance of Technical communication.	08			
V	Business letters: Sales & Credit letters; Claim and Adjustment Letters; Job application and Resumes. Reports: Types; Structure, Style & Writing of Reports. Technical Proposal: Parts; Types; Writing of Proposal; Significance. Nuances of Delivery; Body Language; Dimensions of Speech: Syllable; Accent; Pitch; Rhythm; Intonation; Paralinguistic features of voice; Communication skills, Presentation strategies, Group Discussion; Interview skills; Workshop; Conference; Seminars.	08			

- 1. P.C. Tripathi, P.N. Reddy, "Principles of Management", McGraw Hill Education 6th Edition.
- 2. C. B. Gupta, "Management Principles and Practice", Sultan Chand & Sons 3rd edition.
- 3. T.N.Chhabra, "Business Communication", Sun India Publication.
- 4. V.N.Arora and Laxmi Chandra, "Improve Your Writing", Oxford Univ. Press, 2001, New Delhi.
- 5. Madhu Rani and SeemaVerma, "Technical Communication: A Practical Approach", Acme Learning, New Delhi-2011.
- 6. Meenakshi Raman &Sangeeta Sharma, "Technical Communication- Principles and Practices", Oxford Univ. Press, 2007, New Delhi.
- 7. Koontz Harold & Weihrich Heinz, "Essentials of Management", McGraw Hill 5thEdition 2008.
- 8. Robbins and Coulter, "Management", Prentice Hall of India, 9th edition.
- 9. James A. F., Stoner, "Management", Pearson Education Delhi.
- 10. P.D.Chaturvedi, "Business Communication", Pearson Education.

	KCA104 : Discrete Mathematics	
	Course Outcome (CO) Bloom's Knowledge Level (KL))
	At the end of course, the student will be able to	
CO 1	Use mathematical and logical notation to define and formally reason about basic discrete structures such as Sets, Relations and Functions	K_1, K_2
CO 2	Apply mathematical arguments using logical connectives and quantifiers to check the validity of an argument through truth tables and propositional and predicate logic	K _{2,} K ₃
CO 3	Identify and prove properties of Algebraic Structures like Groups, Rings and Fields	K ₃ , K ₄
CO 4	Formulate and solve recurrences and recursive functions	K ₃ , K ₄
CO 5	Apply the concept of combinatorics to solve basic problems in discrete mathematics	K_1, K_3
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
I	Set Theory: Introduction, Size of sets and Cardinals, Venn diagrams, Combination of sets, Multisets, Ordered pairs and Set Identities. Relation: Definition, Operations on relations, Composite relations, Properties of relations, Equality of relations, Partial order relation. Functions: Definition, Classification of functions, Operations on functions, Recursively defined functions.	08
II	Posets, Hasse Diagram and Lattices: Introduction, Partial ordered sets, Combination of Partial ordered sets, Hasse diagram, Introduction of lattices, Properties of lattices – Bounded, Complemented, Modular and Complete lattice. Boolean Algebra: Introduction, Axioms and Theorems of Boolean algebra, Boolean functions. Simplification of Boolean functions, Karnaugh maps, Logic gates.	08
III	Propositional: Propositions, Truth tables, Tautology, Contradiction, Algebra of Propositions, Theory of Inference and Natural Detection. Predicate Logic: Theory of Predicates, First order predicate, Predicate formulas, Quantifiers, Inference theory of predicate logic.	08
IV	Algebraic Structures: Introduction to algebraic Structures and properties. Types of algebraic structures: Semi group, Monoid, Group, Abelian group and Properties of group. Subgroup, Cyclic group, Cosets, Permutation groups, Homomorphism and Isomorphism of groups. Rings and Fields: Definition and elementary properties of Rings and Fields.	08
V	Natural Numbers: Introduction, Piano's axioms, Mathematical Induction, Strong Induction and Induction with Nonzero Base cases. Recurrence Relation & Generating functions: Introduction and properties of Generating Functions. Simple Recurrence relation with constant coefficients and Linear recurrence relation without constant coefficients. Methods of solving recurrences. Combinatorics: Introduction, Counting techniques and Pigeonhole principle, Polya's Counting theorem.	08

- 1. Kenneth H. Rosen, "Discrete Mathematics and Its Applications", McGraw Hill, 2006.
- 2. B. Kolman, R.C Busby and S.C Ross, "Discrete Mathematics Structures", Prentice Hall ,2004.
- 3. R.P Girimaldi, "Discrete and Combinatorial Mathematics", Addison Wesley, 2004.
- 4. Y.N. Singh, "Discrete Mathematical Structures", Wiley- India, First edition, 2010.
- 5. Swapankumar Sarkar, "A Textbook of Discrete Mathematics", S. Chand & Company PVT. LTD.V.
- 6. Krishnamurthy, "Combinatorics Theory & Application", East-West Press Pvt. Ltd., New Delhi.
- 7. Liptschutz, Seymour, "Discrete Mathematics", McGraw Hill.
- 8. J.P. Trembely&R.Manohar, "Discrete Mathematical Structure with application to Computer Science", McGraw Hill.

	KCA105: COMPUTER ORGANIZATION & ARCHITECTURE				
	Course Outcome (CO) Bloom's Knowledge Level (KL))			
	At the end of course, the student will be able to				
CO 1	Describe functional units of digital system and explain how arithmetic and logical operations are performed by computers	K_2, K_3			
CO 2	Describe the operations of control unit and write sequence of instructions for carrying out simple operation using various addressing modes.	K ₂ , K ₄			
CO 3	Design various types of memory and its organization.	K_3			
CO 4	Describe the various modes in which IO devices communicate with CPU and memory.	K ₂ , K ₃			
CO 5	List the criteria for classification of parallel computer and describe various architectural schemes.	K_1, K_2			
	DETAILED SYLLABUS	3-1-0			
Unit	Торіс	Proposed Lecture			
I	Introduction: Functional units of digital system and their interconnections, buses, bus architecture, types of buses and bus arbitration. Register, bus and memory transfer. Processor organization: general registers organization, stack organization and addressing modes.	08			
П	Arithmetic and logic unit: Look ahead carries adders. Multiplication: Signed operand multiplication, Booths algorithm and array multiplier. Division and logic operations. Floating point arithmetic operation, Arithmetic & logic unit design. IEEE Standard for Floating Point Numbers.	08			
III	Control Unit: Instruction types, formats, instruction cycles and sub cycles (fetch and execute etc), micro operations, execution of a complete instruction. Program Control, Reduced Instruction Set Computer, Pipelining. Hardwire and micro programmed control: micro-program sequencing, concept of horizontal and vertical microprogramming.	08			
IV	Memory: Basic concept and hierarchy, semiconductor RAM memories, 2D & 2 1/2D memory organization. ROM memories. Cache memories: concept and design issues & performance, address mapping and replacement Auxiliary memories: magnetic disk, magnetic tape and optical disks Virtual memory: concept implementation.	08			
V	Input / Output: Peripheral devices, I/O interface, I/O ports, Interrupts: interrupt hardware, types of interrupts and exceptions. Modes of Data Transfer: Programmed I/O, interrupt initiated I/O and Direct Memory Access., I/O channels and processors. Serial Communication: Synchronous & asynchronous communication, standard communication interfaces.	08			

- 1. John P. Hayes, "Computer Architecture and Organization", McGraw Hill.
- 2. William Stallings, "Computer Organization and Architecture-Designing for Performance", Pearson Education.
- 3. M. Morris Mano, "Computer System Architecture", PHI.
- 4. Carl Hamacher, ZvonkoVranesic, SafwatZaky, "Computer Organization", McGraw-Hill.
- 5. BehroozParahami, "Computer Architecture", Oxford University Press.
- 6. David A. Patterson and John L. Hennessy, "Computer Architecture-A Quantitative Approach", Elsevier Pub.
- 7. Tannenbaum, "Structured Computer Organization", PHI.

	KCA151: PROBLEM SOLVING USING C LAB				
	Course Outcome (CO)	Bloom's Knowled ge Level (KL)			
	At the end of course , the student will be able to				
CO1	Write, compile, debug and execute programs in a C programming environment.	K ₃			
CO2	Write programs that incorporate use of variables, operators and expressions along with data types.	K_3			
CO3	Write programs for solving problems involving use of decision control structures and loops.	K ₃			
CO4	Write programs that involve the use of arrays, structures and user defined functions.	K ₃			
CO5	Write programs using graphics and file handling operations.	K ₃			

- 1. Program to implement conditional statements in C language.
- 2. Program to implement switch-case statement in C language
- 3. Program to implement looping constructs in Clanguage.
- 4. Program to perform basic input-output operations in C language.
- 5. Program to implement user defined functions in C language.
- 6. Program to implement recursive functions in C language.
- 7. Program to implement one-dimensional arrays in C language.
- 8. Program to implement two-dimensional arrays in C language.
- 9. Program to perform various operations on two-dimensional arrays in C language.
- 10. Program to implement multi-dimensional arrays in C language.
- 11. Program to implement string manipulation functions in C language.
- 12. Program to implement structure in C language.
- 13. Program to implement union in C language.
- 14. Program to perform file handling operations in C language.
- 15. Program to perform graphical operations in C language.

Note: The Instructor may add/delete/modifyexperiments, wherever he/she feels in a justified manner.

	KCA152: COMPUTER ORGANIZATION & ARCHITECTURE LAB				
	Course Outcome (CO)	Bloom's Knowled ge Level (KL)			
	At the end of course , the student will be able to				
CO1	Design and verify combinational circuits (adder, code converter, decoder, multiplexer) using basic gates.	K ₆			
CO2	Design and verify various flip-flops.	K ₃			
CO3	Design I/O system and ALU.	K ₃			
CO4	Demonstrate combinational circuit using simulator	K_2			

- 1. Implementing HALF ADDER, FULL ADDER using basic logic gates.
- 2. Implementing Binary -to -Gray, Gray -to -Binary code conversions.
- 3. Implementing 3-8 line DECODER. Implementing 4x1 and 8x1 MULTIPLEXERS.
- 4. Verify the excitation tables of various FLIP-FLOPS.
- 5. Design of an 8-bit Input/ Output system with four 8-bit Internal Registers.
- 6. Design of an 8-bit ARITHMETIC LOGIC UNIT.
- 7. Design the data path of a computer from its register transfer language description.
- 8. Design the control unit of a computer using either hardwiring or microprogramming based on its register transfer language description.
- 9. Implement a simple instruction set computer with a control unit and a data path.

Note: The Instructor may add/delete/modify/tune experiments, wherever he/she feels in a justified manner.

	KCA153: PROFESSIONAL COMMUNICATION LAB				
	Course Outcome (CO)	Bloom's Knowled ge Level (KL)			
	At the end of course, the student will be able to				
CO1	Develop the ability to work as a team member as an integral activity in the workplace.	K ₃			
CO2	Increase confidence in their ability to read, comprehend, organize, and retain written information. Improve reading fluency.	K ₄			
CO3	Write coherent speech outlines that demonstrate their ability to use organizational formats with a specific purpose; Deliver effective speeches that are consistent with and appropriate for the audience and purpose.	K ₅ ,K ₆			
CO4	Develop proper listening skills; articulate and enunciate words and sentences clearly and efficiently.	K ₃			
CO5	Show confidence and clarity in public speaking projects; be schooledin preparation and research skills for oral presentations.	K ₅			

- 1. Group Discussion: participating in group discussions- understanding group dynamics.
- 2. GD strategies-activities to improve GD skills. Practical based on Accurate and Current Grammatical Patterns.
- 3. Interview Etiquette-dress code, body language attending job interview Telephone/Skype interview one to one interview &Panel interview.
- 4. Communication Skills for Seminars/Conferences/Workshops with emphasis on Paralinguistic/ Kinesics, practicing word stress, rhythm in sentences, weak forms, intonation.
- 5. Oral Presentation Skills for Technical Paper/Project Reports/ Professional Reports based on proper Stress and Intonation Mechanics voice modulation ,Audience Awareness, Presentation plan visual aids.
- 6. Speaking:-Fluency & Accuracy in speech- positive thinking, Improving Self expression Developing persuasive speaking skills, pronunciation practice (for accept neutralization) particularly of problem sounds, in isolated words as well as sentences.
- 7. Individual Speech Delivery/Conferences with skills to defend Interjections/Quizzes.
- 8. Argumentative Skills/Role Play Presentation with Stress and Intonation.
- 9. Comprehension Skills based on Reading and Listening Practical's on a model Audio-Visual Usage.

Syllabus

MCA 1st Year IInd Semester

MCA (MASTER OF COMPUTER APPLICATION) FIRST YEAR SYLLABUS SEMESTER-II

	KCA201: THEORY OF AUTOMATA & FORMAL LANGUAGES	ı
	Course Outcome (CO) Bloom's Knowledge Level (K	(L)
	At the end of course, the student will be able to	
CO 1	Define various types of automata for different classes of formal languages and explain their working.	K_1, K_2
CO 2	State and prove key properties of formal languages and automata.	K_1, K_3
CO 3	Construct appropriate formal notations (such as grammars, acceptors, transducers and regular expressions) for given formal languages.	K ₃ , K ₄
CO 4	Convert among equivalent notations for formal languages.	K ₃
CO 5	Explain the significance of the Universal Turing machine, Church-Turing thesis and concept of Undecidability.	K ₂
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed
		Lecture
I	Basic Concepts and Automata Theory: Introduction to Theory of Computation- Automata, Computability and Complexity, Alphabet, Symbol, String, Formal Languages, Deterministic Finite Automaton (DFA)- Definition, Representation, Acceptability of a String and Language, Non Deterministic Finite Automaton (NFA), Equivalence of DFA and NFA, NFA with ε-Transition, Equivalence of NFA's with	08
	and without ϵ -Transition, Finite Automata with output- Moore machine, Mealy Machine, Equivalence of Moore and Mealy Machine, Minimization of Finite Automata, Myhill-Nerode Theorem, Simulation of DFA and NFA.	
П	RegularExpressionsandLanguages: RegularExpressions, Transition Graph, Kleen's Theorem, Finite Automata and Regular Expression-Arden's theorem, Algebraic Method Using Arden's Theorem, Regular and Non-Regular Languages- Closure properties of Regular Languages, Pigeonhole Principle, Pumping Lemma, Application of Pumping Lemma, Decidability- Decision properties, Finite Automata and Regular Languages, Regular Languages and Computers, Simulation of Transition Graph and Regular language.	08
III	Regular and Non-Regular Grammars: Context Free Grammar(CFG)-Definition, Derivations, Languages, Derivation Trees and Ambiguity, Regular Grammars-Right Linear and Left Linear grammars, Conversion of FA into CFG and Regular grammar into FA, Simplification of CFG, Normal Forms- Chomsky Normal Form(CNF), Greibach Normal Form (GNF), Chomsky Hierarchy, Programming problems based on the properties of CFGs.	08
IV	Push Down Automata and Properties of Context Free Languages: Nondeterministic Pushdown Automata (NPDA)- Definition, Moves, A Language Accepted by NPDA, Deterministic Pushdown Automata(DPDA) and Deterministic Context free Languages(DCFL),	08

	Pushdown Automata for Context Free Languages, Context Free grammars for Pushdown Automata, Two stack Pushdown Automata, Pumping Lemma for CFL, Closure properties of CFL, Decision Problems of CFL, Programming problems based on the properties of CFLs.	
V	Turing Machines and Recursive Function Theory: Basic Turing Machine Model, Representation of Turing Machines, Language Acceptability of Turing Machines, Techniques for Turing Machine Construction, Modifications of Turing Machine, Turing Machine as Computer of Integer Functions, Universal Turing machine, Linear Bounded Automata, Church's Thesis, Recursive and Recursively Enumerable language, Halting Problem, Post Correspondence Problem, Introduction to Recursive Function Theory.	08

- 1. J.E. Hopcraft, R. Motwani, and Ullman, "Introduction to Automata theory, Languages and Computation", Pearson EducationAsia,2nd Edition.
- 2. J. Martin, "Introduction to languages and the theory of computation", McGraw Hill, 3rd Edition.
- 3. C. Papadimitrou and C. L. Lewis, "Elements and Theory of Computation", PHI.
- 4. K.L.P. Mishra and N. Chandrasekaran ,"Theory of Computer Science Automata Languages and Computation", PHI.
- 5. Y.N. Singh, "Mathematical Foundation of Computer Science", New Age International.

	KCA202: OBJECT ORIENTED PROGRAMMING					
	Course Outcome (CO) Bloom's Knowledge Level (KL)					
	At the end of course, the student will be able to					
CO 1	List the significance and key features of object oriented programming and modeling using UML	K ₄				
CO 2	Construct basic structural, behavioral and architectural models using object oriented software engineering approach.	K ₆				
CO 3	Integrate object oriented modeling techniques for analysis and design of a system.					
CO 4	Use the basic features of data abstraction and encapsulation in C++ programs.	K_4				
CO 5	Use the advanced features such as Inheritance, polymorphism and virtual function in C++ programs.	K_3, K_4				
	DETAILED SYLLABUS	3-1-0				
Unit	Торіс	Proposed Lecture				
I	Introduction: Object Oriented Programming: objects, classes, Abstraction, Encapsulation, Inheritance, Polymorphism, OOP in Java, Characteristics of Java, The Java Environment, Java Source File Structure, and Compilation. Fundamental Programming Structures in Java: Defining classes in Java, constructors, methods, access specifies, static members, Comments, Data Types, Variables, Operators, Control Flow, Arrays.	08				
П	Inheritance, Interfaces, and Packages: Inheritance: Super classes, sub classes, Protected members, constructors in sub classes, Object class, abstract classes and methods. Interfaces: defining an interface, implementing interface, differences between classes and interfaces and extending interfaces, Object cloning, inner classes. Packages: Defining Package, CLASSPATH Setting for Packages, Making JAR Files for Library Packages, Import and Static Import Naming Convention For Packages, Networking java.net package.	08				
III	Exception Handling, I/O : Exceptions: exception hierarchy, throwing and catching exceptions, built-in exceptions, creating own exceptions, Stack Trace Elements. Input / Output Basics: Byte streams and Character streams, Reading and Writing, Console Reading and Writing Files.	08				
IV	Multithreading and Generic Programming: Differences between multi-threading and multitasking, thread life cycle, creating threads, synchronizing threads, Inter-thread communication, daemon threads, thread groups. Generic Programming: Generic classes, generic methods, Bounded Types: Restrictions and Limitations.	08				
V	Event Driven Programming: Graphics programming: Frame, Components, working with 2D shapes, Using colors, fonts, and images. Basics of event handling: event handlers, adapter classes, actions, mouse events, AWT event hierarchy. Introduction to Swing: layout management, Swing Components: Text Fields, Text Areas, Buttons, Check Boxes, Radio Buttons, Lists, choices, Scrollbars, Windows Menus and Dialog Boxes.	08				

- 1. Herbert Schildt, "Java The complete referencel", McGraw Hill Education, 8th Edition, 2011.
- 2. Cay S. Horstmann, Gary Cornell, "Core Java Volume -I Fundamentals", Prentice Hall, 9th Edition,2013.

- Steven Holzner, "Java Black Book", Dreamtech.
 Balagurusamy E, "Programming in Java", McGraw Hill
 Naughton, Schildt, "The Complete reference java2", McGraw Hill
 Khalid Mughal, "A Programmer's Guide to Java SE 8 Oracle Certified Associate (OCA)", Addison-Wesley.

	KCA203: OPERATING SYSTEMS						
	Course Outcome (CO) Bloom's Knowledge Level (KI	L)					
	At the end of course, the student will be able to	,					
CO 1	Explain main components, services, types and structure of Operating Systems.	K_2					
CO 2	Apply the various algorithms and techniques to handle the various concurrency control issues.						
CO 3	Compare and apply various CPU scheduling algorithms for process execution.	K_2					
CO 4	Identify occurrence of deadlock and describe ways to handle it.	K ₃					
CO 5	Explain and apply various memory, I/O and disk management techniques.	K ₅					
	DETAILED SYLLABUS	3-0-0					
Unit	Торіс	Proposed Lecture					
I	Introduction: Operating System Structure- Layered structure, System Components, Operating system functions, Classification of Operating systems- Batch, Interactive, Time sharing, Real Time System, Multiprocessor Systems, Multiuser Systems, Multi process Systems, Multithreaded Systems, Operating System services, Reentrant Kernels, Monolithic and Microkernel Systems.						
II	Concurrent Processes: Process Concept, Principle of Concurrency, Producer / Consumer Problem, Mutual Exclusion, Critical Section Problem, Dekker's solution, Peterson's solution, Semaphores, Test and Set operation, Classical Problem in Concurrency- Dining Philosopher Problem, Sleeping Barber Problem, Inter Process Communication models and Schemes, Process generation.						
III	CPU Scheduling: Scheduling Concepts, Performance Criteria, Process States, Process Transition Diagram, Schedulers, Process Control Block (PCB), Process address space, Process identification information, Threads and their management, Scheduling Algorithms, Multiprocessor Scheduling. Deadlock: System model, Deadlock characterization, Prevention, Avoidance and detection, Recovery from deadlock.	08					
IV	Memory Management: Basic bare machine, Resident monitor, Multiprogramming with fixed partitions, Multiprogramming with variable partitions, Protection schemes, Paging, Segmentation, Paged segmentation, Virtual memory concepts, Demand paging, Performance of demand paging, Page replacement algorithms, Thrashing, Cache memory organization, Locality of reference.	08					
V	I/O Management and Disk Scheduling: I/O devices, and I/O subsystems, I/O buffering, Disk storage and disk scheduling, RAID. File System: File concept, File organization and access mechanism, File directories, and File sharing, File system implementation issues, File system protection and security.	08					

Suggested Readings:

- 1. Silberschatz, Galvin and Gagne, "Operating Systems Concepts", Wiley Publication.
- 2. Sibsankar Halder and Alex A Arvind, "Operating Systems", Pearson Education.
- 3. Harvey M Dietel, "An Introduction to Operating System", Pearson Education.
- 4. William Stallings, "Operating Systems: Internals and Design Principles", 6th Edition, Pearson Education.
- 5. Harris, Schaum's Outline Of Operating Systems, McGraw Hill

KCA204: DATABASE MANAGEMENT SYSTEMS

	Course Outcome (CO)	Bloom's Knowledge Level (KL))			
		e , the student will be able to				
CO 1	Describe the features of a database sys types of data models.	tem and its application and compare various	K ₂			
CO 2	Construct an ER Model for a given problem and transform it into a relation database schema.					
CO 3	calculus and domain calculus.	sing SQL Commands, relational algebra, tuple	K_5, K_6			
CO 4	Explain the need of normalization and no form.	ormalize a given relation to the desired normal	K ₂ , K ₃			
CO 5	Explain different approaches of transaction	on processing and concurrency control.	K_2			
	DETAILED SY		3-0-0			
Unit		Горіс	Proposed Lecture			
П	and Architecture, Data Model Schema ar Language and Interfaces, Data Defir Structure. Data Modeling Using the Ent Notation for ER Diagram, Mapping Candidate Key, Primary Key, Genera Diagrams to Tables, Extended ER Model Relational data Model and Language Constraints, Entity Integrity, Referer Constraints, Relational Algebra, Relational Introduction to SQL: Characteristics of States Literals. Types of SQL Commands. SQL and Indexes. Queries and Sub Queries. A	e: Relational Data Model Concepts, Integrity tital Integrity, Keys Constraints, Domain conal Calculus, Tuple and Domain Calculus. SQL, Advantage of SQL. SQL Data Type and Operators and their Procedure. Tables, Views aggregate Functions. Insert, Update and Delete	08			
111	Operations, Joins, Unions, Intersection SQL/PL SQL	n, Minus, Cursors, Triggers, Procedures in	00			
III	second, third normal forms, BCNI decompositions, normalization using FI database design	Functional dependencies, normal forms, first, F, inclusion dependence, loss less join D, MVD, and JDs, alternative approaches to	08			
IV	Serializability of Schedules, Conflict & Recovery from Transaction Failures, L	Ansaction System, Testing of Serializability, View Serializable Schedule, Recoverability, og Based Recovery, Checkpoints, Deadlock ibuted Data Storage, Concurrency Control,	08			
V	Concurrency Control Techniques: Co Concurrency Control, Time Stamping P	procurrency Control, Locking Techniques for rotocols for Concurrency Control, Validation Multi Version Schemes, Recovery with tracle.	08			

- 1. Korth, Silbertz, Sudarshan," Database Concepts", McGraw Hill.
- 2. Date C J, "An Introduction to Database Systems", Addision Wesley.
- 3. Elmasri, Navathe, "Fundamentals of Database Systems", Addision Wesley.
- 4. O'Neil, "Databases", Elsevier Pub.
- 5. Ramakrishnan, "Database Management Systems", McGraw Hill.
- 6. Leon & Leon,"Database Management Systems", Vikas Publishing House.
- 7. Bipin C. Desai, "An Introduction to Database Systems", Gagotia Publications.
- 8. Majumdar& Bhattacharya, "Database Management System", McGraw Hill.

K	KCA205: DATA STRUCTURES & ANALYSIS OF ALGORITHMS					
	Course Outcome (CO)	Bloom's Knowledge Level (KL)				
	At the end of course , the student will be able to					
CO 1	Explain the concept of data structure, abstract data types, algorithms, analysis of algorithms and basic data organization schemes such as arrays and linked lists.	K_2				
CO 2	Describe the applications of stacks and queues and implement various operations on them using arrays and linked lists.	K ₃				
CO 3	Describe the properties of graphs and trees and implement various operations such as searching and traversal on them.	K_3				
CO 4	Compare incremental and divide-and-conquer approaches of designing algorithms for problems such as sorting and searching.	K_4				
CO 5	Apply and analyze various design approaches such as Divide-and-Conquer, greedy and dynamic for problem solving .	K_4				
	DETAILED SYLLABUS	4-0-0				
Unit	Торіс	Proposed Lecture				
I	Introduction to data structure: Data, Entity, Information, Difference between Data and Information, Data type, Build in data type, Abstract data type, Definition of data structures, Types of Data Structures: Linear and Non-Linear Data Structure, Introduction to Algorithms: Definition of Algorithms, Difference between algorithm and programs, properties of algorithm, Algorithm Design Techniques, Performance Analysis of Algorithms, Complexity of various code structures, Order of Growth, Asymptotic Notations. Arrays: Definition, Single and Multidimensional Arrays, Representation of Arrays: Row Major Order, and Column Major Order, Derivation of Index Formulae for 1-D,2-D Array Application of arrays, Sparse Matrices and their representations. Linked lists: Array Implementation and Pointer Implementation of Singly Linked Lists, Doubly Linked List, Circularly Linked List, Operations on a Linked List. Insertion, Deletion, Traversal, Polynomial Representation and Addition Subtraction & Multiplications of Single variable.	08				
II	Stacks: Abstract Data Type, Primitive Stack operations: Push & Pop, Array and Linked Implementation of Stack in C, Application of stack: Prefix and Postfix Expressions, Evaluation of postfix expression, Iteration and Recursion- Principles of recursion, Tail recursion, Removal of recursion Problem solving using iteration and recursion with examples such as binary search, Fibonacci numbers, and Hanoi towers. Queues: Operations on Queue: Create, Add, Delete, Full and Empty, Circular queues, Array and linked implementation of queues in C, Dequeue and Priority Queue. Searching: Concept of Searching, Sequential search, Index Sequential Search, Binary Search. Concept of Hashing & Collision resolution Techniques used in Hashing.	08				

III	Sorting: Insertion Sort, Selection Sort, Bubble Sort, Heap Sort, Comparison	
	of Sorting Algorithms, Sorting in Linear Time: Counting Sort and Bucket	
	Sort.	08
	Graphs: Terminology used with Graph, Data Structure for Graph	
	Representations: Adjacency Matrices, Adjacency List, Adjacency. Graph	
	Traversal: Depth First Search and Breadth First Search, Connected	
	Component.	
IV	Trees: Basic terminology used with Tree, Binary Trees, Binary Tree	
	Representation: Array Representation and Pointer (Linked List)	08
	Representation, Binary Search Tree, Complete Binary Tree, A Extended	
	Binary Trees, Tree Traversal algorithms: Inorder, Preorder and Postorder,	
	Constructing Binary Tree from given Tree Traversal, Operation of Insertion,	
	Deletion, Searching & Modification of data in Binary Search Tree.	
	Threaded Binary trees, Huffman coding using Binary Tree, AVL Tree and B	
	Tree.	
V	Divide and Conquer with Examples Such as Merge Sort, Quick Sort, Matrix	
	Multiplication: Strassen's Algorithm	08
	Dynamic Programming: Dijikstra Algorithm, Bellman Ford Algorithm, All-	
	pair Shortest Path: Warshal Algorithm, Longest Common Sub-sequence	
	Greedy Programming: Prims and Kruskal algorithm.	

- 1. Cormen T. H., Leiserson C. E., Rivest R. L., and Stein C., "Introduction to Algorithms", PHI.
- 2. Horowitz Ellis, Sahni Sartaj and Rajasekharan S., "Fundamentals of Computer Algorithms", 2nd Edition, Universities Press.
- 3. Dave P. H., H.B.Dave, "Design and Analysis of Algorithms", 2nd Edition, Pearson Education.
- 4. Lipschuts S., "Theory and Problems of Data Structures", Schaum's Series.
- 5. Goyal K. K., Sharma Sandeep & Gupta Atul, "Data Structures and Analysis of Algorithms", HP Hamilton.
- 6. Lipschutz, Data Structures With C SIE SOS, McGraw Hill
- 7. Samanta D., "Classic Data Structures", 2nd Edition Prentice Hall India.
- 8. Goodrich M. T. and Tomassia R., "Algorithm Design: Foundations, Analysis and Internet examples", John Wiley and sons.
- 9. Sridhar S., "Design and Analysis of Algorithms", Oxford Univ. Press.
- 10. Aho, Ullman and Hopcroft, "Design and Analysis of algorithms", Pearson Education.
- 11. R. Neapolitan and K. Naimipour, "Foundations of Algorithms",4th edition, Jones an Bartlett Student edition.
- 12. Reema Thareja, Data Structures using C, Oxford Univ. Press

	KCAA01: CYBER SECURITY						
	Course Outcome (CO) Bloom's Knowledge Level (KI	L)					
	At the end of course, the student will be able to						
CO 1	Identify and analyze nature & inherent difficulties in the security of the Information System.	K ₃					
CO 2	Analyze various threats and attacks, corresponding counter measures and various vulnerability assessment and security techniques in an organization.						
CO 3	Applications of cyber based policies and use of IPR and patent law for software-based design. Define E-commerce types and threats to E-commerce.	K_1,K_2					
CO 4	Explain concepts and theories of networking and apply them to various situations, classifying networks, analyzing performance.	K_2					
	DETAILED SYLLABUS	2-0-0					
Unit	Торіс	Proposed Lecture					
I	Introduction- Introduction to Information Systems, Types of Information Systems, Development of Information Systems, Introduction to Information Security and CIA triad, Need for Information Security, Threats to Information Systems, Information Assurance and Security Risk Analysis, Cyber Security.	08					
II	Application Security- (Database, E-mail and Internet), Data Security Considerations-(Backups, Archival Storage and Disposal of Data), Security Technology-(Firewall, VPNs, Intrusion Detection System), Access Control. Security Threats - Viruses, Worms, Trojan Horse, Bombs, Trapdoors, Spoofs, E-mail Viruses, Macro Viruses, Malicious Software, Network and Denial of Services Attack.	08					
III	Introduction to E-Commerce, Threats to E-Commerce, Electronic Payment System, e- Cash, Credit/Debit Cards. Digital Signature, Cryptography Developing Secure Information Systems, Application Development Security, Information Security Governance & Risk Management, Security Architecture & Design Security Issues in Hardware, Data Storage & Downloadable Devices, Physical Security of IT Assets - Access Control, CCTV, Backup Security Measures.	08					
IV	Security Policies- Why policies should be developed, Policy Review Process, Publication and Notification Requirement of policies, Types of policies – WWW policies, Email Security policies, Corporate Policies, Sample Security Policies. Case Study – Corporate Security	08					
V	Information Security Standards-ISO, IT Act, Copyright Act, IPR. Cyber Crimes, Cyber Laws in India; IT Act 2000 Provisions, Intellectual Property Law, Copy Right Law, Semiconductor Law and Patent Law, Software Piracy and Software License.	08					

	KCA251:OBJECT ORIENTED PROGRAMMING LAB							
	Course Outcome (CO)	Bloom's Knowledge Level (KL)						
	At the end of course, the student will be able to							
CO1	Use the Concept of Data Abstraction and Encapsulation in C++ programs.	K ₃						
CO2	Design and Develop C++ program using the concept such as polymorphism, virtual function, exception handling and template.	K_3						
CO3	Apply object oriented techniques to analyze, design and develop a complete solution for a given problem.	K ₃						

- 1. Use Java compiler and eclipse platform to write and execute java program.
- 2. Creating simple java programs,
- 3. Understand OOP concepts and basics of Java programming.
- 4. Create Java programs using inheritance and polymorphism.
- 5. Implement error-handling techniques using exception handling and multithreading.
- 6. Understand the use of java packages.
- 7. File handling and establishment of database connection.
- 8. Develop a calculator application in java.
- 9. Develop a Client Server Application.
- 10. Develop GUI applications using Swing components.

	KCA252: DATABASE MANAGEMENT SYSTEMS LAB						
	Course Outcome (CO)						
	At the end of course , the student will be able to						
CO1	CO1 Use the Concept of Data Abstraction and Encapsulation in C++ programs.						
CO2	Write SQL commands to query a database.	K ₃					
CO3	Write PL/SQL programs for implementing stored procedures, stored functions, cursors, trigger and packages.	K ₆					

- 1. Installing oracle/ MYSQL.
- 2. Creating Entity-Relationship Diagram using case tools.
- 3. Writing SQL statements Using ORACLE /MYSQL:
 - a. Writing basic SQL SELECT statements.
 - b.Restricting and sorting data.
 - c.Displaying data from multiple tables.
 - d.Aggregating data using group function.
 - e. Manipulating data.
 - f. Creating and managing tables.
- 4. Normalization.
- 5. Creating cursor.
- 6. Creating procedure and functions.
- 7. Creating packages and triggers.
- 8. Design and implementation of payroll processing system.
- 9. Design and implementation of Library Information System.
- 10. Design and implementation of Student Information System.
- 11. Automatic Backup of Files and Recovery of Files.

	KCA253:DATA STRUCTURES & ANALYSIS OF ALGORITHMS LAB							
	Course Outcome (CO)	Bloom's Knowledge Level (KL)						
	At the end of course , the student will be able to							
CO1	Write and execute programs to implement various searching and sorting algorithms.	K ₃						
CO2	Write and execute programs to implement various operations on two-dimensional arrays.	K_3						
CO3	Implement various operations of Stacks and Queues using both arrays and linked lists data structures.	K_3						
CO4	Implement graph algorithm to solve the problem of minimum spanning tree	K ₃						

Program in C or C++ for following:

- 1. To implement addition and multiplication of two 2D arrays.
- 2. To transpose a 2D array.
- 3. To implement stack using array
- 4. To implement queue using array.
- 5. To implement circular queue using array.
- 6. To implement stack using linked list.
- 7. To implement queue using linked list.
- 8. To implement BFS using linked list.
- 9. To implement DFS using linked list.
- 10. To implement Linear Search.
- 11. 11.To implement Binary Search.
- 12. To implement Bubble Sorting.
- 13. To implement Selection Sorting.
- 14. To implement Insertion Sorting.
- 15. To implement Merge Sorting.
- 16. To implement Heap Sorting.
- 17. To implement Matrix Multiplication by strassen's algorithm
- 18. Find Minimum Spanning Tree using Kruskal's Algorithm

DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY, UTTAR PRADESH, LUCKNOW

EVALUATION SCHEME & SYLLABUS

FOR

MASTER OF COMPUTER APPLICATION (MCA)

(Two Year Course)

AS PER
AICTE MODEL CURRICULUM

[Effective from the Session: 2021-22]

MASTER OF COMPUTER APPLICATION (MCA) MCA SECOND YEAR, 2021-22

SEMESTER-III

S. No.	Subject	Subject Name	Per	Periods			Periods			Session	nal	ESE	Total	Credit
	Code		L	T	P	CT	TA	Total						
1.	KCA301	Artificial Intelligence	3	0	0	30	20	50	100	150	3			
2.	KCA302	Software Engineering	4	0	0	30	20	50	100	150	4			
3.	KCA303	Computer Network	3	1	0	30	20	50	100	150	4			
4.		Elective – 1	3	0	0	30	20	50	100	150	3			
5.		Elective – 2	3	1	0	30	20	50	100	150	3			
6.	KCA351	Artificial Intelligence Lab	0	0	3	30	20	50	50	100	2			
7.	KCA352	Software Engineering Lab	0	0	3	30	20	50	50	100	2			
8.	KCA353	Mini Project**	0	0	4	30	20	50	50	100	2			
		Total								1050	23			

CT: Class Test TA: Teacher Assessment

L/T/P: Lecture/ Tutorial/ Practical

SEMESTER-IV

S. No.	Subject	Subject Name	Periods		Periods		Sessional		ESE	Total	Credit
	Code		L	T	P	CT	TA	Total			
1.		Elective – 3	3	0	0	30	20	50	100	150	3
2.		Elective – 4	3	0	0	30	20	50	100	150	3
3.		Elective – 5	3	0	0	30	20	50	100	150	3
4.	KCA451	Project	-	-	-	-	200	200	500	700	14
		Total								1050	23

CT: Class Test TA: Teacher Assessment

L/T/P: Lecture/ Tutorial/ Practical

^{**} The Mini Project (6 weeks) conducted during summer break after II semester and will be assessed during III semester. The Course will be carried out at the Institute under the guidance of a Faculty Members.

Elective-1	KCA011	Cryptography & Network Security
	KCA012	Data Warehousing & Data Mining
	KCA013	Software Project Management
	KCA014	Cloud Computing
	KCA015	Compiler Design

Elective-2	KCA021	Web Technology
	KCA022	Big Data
	KCA023	Simulation & Modeling
	KCA024	Software Testing & Quality Assurance
	KCA025	Digital Image Processing

Elective-3	KCA031	Privacy & Security in Online Social Media	
	KCA032	Soft Computing	
	KCA033	Pattern Recognition	
	KCA034	Data Analytics	
	KCA035	Software Quality Engineering	

Elective-4	KCA041	Blockchain Architecture
	KCA042	Neural Network
	KCA043	Internet of Things
	KCA044	Modern Application Development
	KCA045	Distributed Database Systems

Elective-5	KCA051	Mobile Computing
	KCA052	Computer Graphics and Animation
	KCA053	Natural Language Processing
	KCA054	Machine Learning
	KCA055	Quantum Computing

SECOND YEAR SYLLABUS SEMESTER-III

	KCA301: Artificial Intelligence	
	Course Outcome (CO) Bloom's Knowledge Level (Kl	L)
	At the end of course, the student will be able to understand	
CO 1	Define the meaning of intelligence and study various intelligent agents.	K_1
CO 2	Understand, analyze and apply AI searching algorithms in different problem	K_2, K_3, K_4
	domains.	
CO 3	Study and analyze various models for knowledge representation.	K_1, K_3
CO 4	Understand the basic concepts of machine learning to analyze and implement	K_2 , K_4 , K_6
	widely used learning methods and algorithms.	
CO 5	Understand the concept of pattern recognition and evaluate various	K_2, K_5
	classification and clustering techniques	
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed
		Lecture
I	Artificial Intelligence: Introduction to artificial intelligence, Historical	08
	development and foundation areas of artificial intelligence, Tasks and	
	application areas of artificial intelligence. Introduction, types and structure of	
	intelligent agents, Computer Vision, Natural language processing.	
II	Searching Techniques: Introduction, Problem solving by searching, Searching	08
	for solutions, Uniformed searching techniques, Informed searching techniques,	
	Local search algorithms, Adversarial search methods, Search techniques used	
III	in games, Alpha-Beta pruning. Knowledge Representation and Reasoning: Propositional logic, Predicate	08
111	logic, First order logic, Inference in first order logic, Clause form conversion,	Vo
	Resolution. Chaining- concept, forward chaining and backward chaining,	
	Utility theory and Probabilistic reasoning, Hidden Markov model, Bayesian	
	networks.	
IV	Machine Learning: Introduction, types and application areas, Decision trees,	08
1,	Statistical learning methods, Learning with complete data - concept and Naïve	00
	Bayes models, Learning with hidden data- concept and EM algorithm,	
	Reinforcement learning.	
V	Pattern Recognition: Introduction and design principles, Statistical pattern	08
	recognition, Parameter estimation methods - Principle component analysis and	
	Linear discrimination analysis, Classification techniques - Nearest neighbor	
	rule and Bayes classifier, K-means clustering, Support vector machine.	
~	·	

- 1. Russell S. and Norvig P., "Artificial Intelligence A Modern Approach", Pearson Education.
- 2. Rich E. and Knight K., "Artificial Intelligence", McGraw Hill Publications.
- 3. Charnik E. and McDermott D., "Introduction to Artificial Intelligence", Pearson Education.
- 4. Patterson D. W., "Artificial Intelligence and Expert Systems", Prentice Hall of India Publications.
- 5. Khemani D., "A First Course in Artificial Intelligence", McGraw Hill.
- 6. Winston P. H., "Artificial Intelligence", Pearson Education.
- 7. Thornton C. and Boulay B.," Artificial Intelligence- Strategies, Applications and Models through Search", New Age International Publishers.

	KCA302: Software Engineering	
	Course Outcome (CO) Bloom's Knowledge	Level (KL)
	At the end of course, the student will be able to understand	
CO 1	Explain various software characteristics and analyze different software Development Models.	K_1, K_2
CO 2	Demonstrate the contents of a SRS and apply basic software quality	K_1, K_2
	assurance practices to ensure that design, development meet or exceed applicable standards.	
CO 3	Compare and contrast various methods for software design.	K_2, K_3
CO 4	Formulate testing strategy for software systems, employ techniques such	
	as unit testing, Test driven development and functional testing.	K_3
CO 5	Manage software development process independently as well as in	77
	teams and make use of various software management tools for	K_5
	development, maintenance and analysis.	2.1.0
T I :4	DETAILED SYLLABUS	3-1-0
Unit	Торіс	Proposed Lecture
I	Introduction: Introduction to Software Engineering, Software	08
	Components, Software Characteristics, Software Crisis, Software	00
	Engineering Processes, Similarity and Differences from Conventional	
	Engineering Processes, Software Quality Attributes. Software	
	Development Life Cycle (SDLC) Models: Water Fall Model, Prototype	
	Model, Spiral Model, Evolutionary Development Models, Iterative	
	Enhancement Models.	
II	Software Requirement Specifications (SRS): Requirement	08
	Engineering Process: Elicitation, Analysis, Documentation, Review and	
	Management of User Needs, Feasibility Study, Information Modelling, Data Flow Diagrams, Entity Relationship Diagrams, Decision Tables,	
	SRS Document, IEEE Standards for SRS. Software Quality Assurance	
	(SQA): Verification and Validation, SQA Plans, Software Quality	
	Frameworks, ISO 9000 Models, SEI-CMM Model.	
III	Software Design: Basic Concept of Software Design, Architectural	08
	Design, Low Level Design: Modularization, Design Structure Charts,	
	Pseudo Codes, Flow Charts, Coupling and Cohesion Measures, Design	
	Strategies: Function Oriented Design, Object Oriented Design, Top-	
	Down and Bottom-Up Design. Software Measurement and Metrics:	
	Various Size Oriented Measures: Halestead's Software Science, Function Point (FP) Based Measures, Cyclomatic Complexity Measures:	
	Control Flow Graphs.	
IV	Software Testing: Testing Objectives, Unit Testing, Integration	08
- '	Testing, Acceptance Testing, Regression Testing, Testing for	00
	Functionality and Testing for Performance, Top Down and Bottom- Up	
	Testing Strategies: Test Drivers and Test Stubs, Structural Testing	
	(White Box Testing), Functional Testing (Black Box Testing), Test Data	
	Suit Preparation, Alpha and Beta Testing of Products. Static Testing	
	Strategies: Formal Technical Reviews (Peer Reviews), Walk Through,	

	Code Inspection, Compliance with Design and Coding Standards.	
V	Software Maintenance and Software Project Management: Software as an Evolutionary Entity, Need for Maintenance, Categories of Maintenance: Preventive, Corrective and Perfective Maintenance, Cost of Maintenance, Software Re-Engineering, Reverse Engineering. Software Configuration Management Activities, Change Control Process, Software Version Control, An Overview of CASE Tools. Estimation of Various Parameters such as Cost, Efforts, Schedule/Duration, Constructive Cost Models (COCOMO), Resource Allocation Models, Software Risk Analysis and Management.	08

- 1. R S Pressman, "Software Engineering: A Practitioners Approach", McGraw Hill.
- 2. Pankaj Jalote, "Software Engineering", Wiley
- 3. Rajib Mall, "Fundamentals of Software Engineering", PHI Publication.
- 4. K K Aggarwal and Yogesh Singh, "Software Engineering", New Age International Publishers.
- 5. Ghezzi, M. Jarayeri, D. Manodrioli, "Fundamentals of Software Engineering", PHI Publication.
- 6. Ian Sommerville, "Software Engineering", Addison Wesley.
- 7. Kassem Saleh, "Software Engineering", Cengage Learning
- 8. Pfleeger, "Software Engineering", Macmillan Publication

	KCA303: Computer Networks	
	Course Outcome (CO) Bloom's Knowledge Level (F	KL)
	At the end of course, the student will be able to understand	,
CO 1	Describe communication models TCP/IP, ISO-OSI model, network topologies along with communicating devices and connecting media.	K2
CO 2	Apply knowledge of error detection, correction and learn concepts of flow control along with error control.	К3
CO 3	Classify various IP addressing techniques, subnetting along with network routing protocols and algorithms.	K4
CO 4	Understand various transport layer protocols and their design considerations along with congestion control to maintain Quality of Service.	K2
CO 5	Understand applications-layer protocols and elementary standards of	K2
	cryptography and network security.	
	DETAILED SYLLABUS	3-0-0
Unit	Topic	Proposed Lecture
I	Data Communications: Introduction: Data communication Components and characteristics, Data representation and Data flow. Networks: LAN, WAN, MAN, Topologies. Protocols and Standards: ISO-OSI model and TCP-IP Model. Network Connecting Devices: HUB, Bridge, Switch, Router and Gateways. Transmission Media: Guided and unguided Media Classification and Arrangement: Wired LANs and Wireless LANs	08
п	Data Link Layer: Error Detection and Error Correction: Types of errors, LRC, VRC, Checksum, CRC, and Hamming Code. Flow Control and Error Control: Stop and Wait Protocol, Sliding Window, Go-back-N-ARQ Protocol and Selective-Repeat ARQ Protocol. Channel Allocation Protocols: Random Access, Controlled and Channelization techniques such as ALOHA, CSMA, CSMA/CD, CDMA/CA, TDMA, FDMA, Token Passing, etc.	08
Ш	Network Layer: Switching Techniques: Circuit Switching, Packet Switching, and Message Switching. Logical addressing: IPv4 and IPv6 Address schemes, Classes and subnetting Network Layer Protocols: ARP, RARP, BOOTP and DHCP Routing Techniques: Interdomain and Intradomain routing with examples.	08
IV	Transport Layer: Introduction to Transport Layer: Process-to-Process Delivery:	08

	Reliable and unreliable Connection, Port and Socket Addressing	
	Transport Layer Protocols with packet formats: User Datagram	
	Protocol (UDP), Transmission Control Protocol (TCP), Stream Control	
	Transmission Protocol (SCTP).	
	Congestion Control: Techniques for handling the Congestion Control.	
	Quality of Service (QoS): Flow Characteristics and techniques to	
	improve QoS.	
	Application Layer:	
	Basic Concept of Application Layer: Domain Name System, World	
	Wide Web, Hyper Text Transfer Protocol, Electronic mail, File Transfer	
\mathbf{V}	Protocol, Remote login.	08
	Introduction to Cryptography: Definition, Goal, Applications,	
	Attacks, Encryption, decryption, public-key and private key	
	cryptography.	

- 1. Behrouz Forouzan, "Data Communication and Networking", McGraw Hill
- 2. Andrew Tanenbaum "Computer Networks", Prentice Hall.
- 3. William Stallings, "Data and Computer Communication", Pearson.
- 4. Kurose and Ross, "Computer Networking- A Top-Down Approach", Pearson.
- 5. Peterson and Davie, "Computer Networks: A Systems Approach", Morgan Kaufmann
- 6. W. A. Shay, "Understanding Communications and Networks", Cengage Learning.
- 7. D. Comer, "Computer Networks and Internets", Pearson.
- 8. Behrouz Forouzan, "TCP/IP Protocol Suite", McGraw Hill.

ELECTIVE-1

	KCA011: Cryptography & Network Security	
	Course Outcome (CO) Bloom's Knowledge Level (K)	L)
	At the end of course, the student will be able to understand	
CO 1	Understand various security attacks and their protection mechanism.	K_2
CO 2	Apply and analyze various encryption algorithms.	K_3, K_4
CO 3	Understand functions and algorithms to authenticate messages and study and	K_1, K_2, K_3
	apply different digital signature techniques.	
CO 4	Analyze different types of key distributions.	K_4
CO 5	Study and appraise different IP and system security mechanism.	K_1, K_5
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
I	Introduction to security attacks, Services and mechanism, Classical encryption techniques substitution ciphers and transposition ciphers, Cryptanalysis, Steganography, Stream and block ciphers. Modern Block Ciphers: Block ciphers principles, Shannon's theory of confusion and diffusion, Feistel structure, Data encryption standard(DES), Strength of DES, Idea of differential cryptanalysis, Block cipher modes of operations, Triple DES	08
II	Introduction to group, field, finite field of the form GF(p), Modular arithmetic, Prime and relative prime numbers, Extended Euclidean Algorithm, Advanced Encryption Standard (AES). Fermat's and Euler's theorem, Primality testing, Chinese Remainder theorem, Discrete Logarithmic Problem, Principals of public key crypto systems, RSA algorithm, Security of RSA	08
III	Message Authentication Codes: Authentication requirements, Authentication functions, Message authentication code, Hash functions, Birthday attacks, Security of hash functions, Secure hash algorithm (SHA). Digital Signatures: Digital Signatures, Elgamal Digital Signature Techniques, Digital signature standards (DSS), Proof of digital signature algorithm.	08
IV	Key Management and distribution: Symmetric key distribution, Diffie-Hellman Key Exchange, Public key distribution, X.509 Certificates, Public key Infrastructure. Authentication Applications: Kerberos Electronic mail security: pretty good privacy (PGP), S/MIME.	08
	IP Security: Architecture, Authentication header, Encapsulating security payloads, Combining security associations, Key management. Introduction to Secure Socket Layer, Secure electronic transaction (SET). System Security: Introductory idea of Intrusion, Intrusion detection, Viruses and related threats, firewalls. ted Readings: Stallings W., "Cryptography and Network Security: Principals and Practice	08

- 1. Stallings W., "Cryptography and Network Security: Principals and Practice", Pearson Education.
- 2. Frouzan B. A., "Cryptography and Network Security", McGraw Hill.
- 3. Kahate A., "Cryptography and Network Security", Tata McGraw Hill.

	KCA012: Data Warehousing & Data Mining			
	Course Outcome (CO) Bloom's Knowledge Level (K	I')		
	At the end of course, the student will be able to understand			
CO1	Demonstrate knowledge of Data Warehouse and its components.			
CO2	Discuss the process of Warehouse Planning and Implementation.			
CO3	Discuss and implement various supervised and Non supervised learning	K ₁ , K ₂		
	algorithms on data.			
CO4	Explain the various process of Data Mining and decide best according to type of data.	K_2, K_5		
CO5	Explain process of knowledge discovery in database (KDD). Design Data Mining model.	K_2, K_5		
	DETAILED SYLLABUS	4-0-0		
Unit	Торіс	Proposed Lecture		
I	Data Warehousing : Overview, Definition, Data Warehousing Components, Building a Data Warehouse, Warehouse Database, Mapping the Data Warehouse to a Multiprocessor Architecture, Difference between Database System and Data Warehouse, Multi Dimensional Data Model, Data Cubes, Stars, Snow Flakes, Fact Constellations, Concept.	08		
II	Data Warehouse Process and Technology: Warehousing Strategy, Warehouse /management and Support Processes, Warehouse Planning and Implementation, Hardware and Operating Systems for Data Warehousing, Client/Server Computing Model & Data Warehousing. Parallel Processors & Cluster Systems, Distributed DBMS implementations, Warehousing Software, Warehouse Schema Design	08		
III	Data Mining : Overview, Motivation, Definition & Functionalities, Data Processing, Form of Data Pre-processing, Data Cleaning: Missing Values, Noisy Data, (Binning, Clustering, Regression, Computer and Human inspection), Inconsistent Data, Data Integration and Transformation. Data Reduction:-Data Cube Aggregation, Dimensionality reduction, Data Compression, Numerosity Reduction, Discretization and Concept hierarchy generation, Decision Tree	08		
IV	Classification: Definition, Data Generalization, Analytical Characterization, Analysis of attribute relevance, Mining Class comparisons, Statistical measures in large Databases, Statistical-Based Algorithms, Distance-Based Algorithms, Decision Tree-Based Algorithms. Clustering: Introduction, Similarity and Distance Measures, Hierarchical and Partitional Algorithms. Hierarchical Clustering- CURE and Chameleon. Density Based Methods DBSCAN, OPTICS. Grid Based Methods- STING, CLIQUE. Model Based Method – Statistical Approach, Association rules: Introduction, Large Item sets, Basic Algorithms, Parallel and Distributed Algorithms, Neural Network approach.	08		
V	Data Visualization and Overall Perspective : Aggregation, Historical information, Query Facility, OLAP function and Tools. OLAP Servers, ROLAP, MOLAP, HOLAP, Data Mining interface, Security, Backup and			

Recovery, Tuning Data Warehouse, Testing Data Warehouse.	
Warehousing applications and Recent Trends: Types of Warehousing	
Applications, Web Mining, Spatial Mining and Temporal Mining.	08

- 1. Alex Berson, Stephen J. Smith "Data Warehousing, Data-Mining & OLAP", TMH.
- 2. Mark Humphries, Michael W. Hawkins, Michelle C. Dy, "Data Warehousing: Architecture and Implementation", Pearson.
- 3. I.Singh, "Data Mining and Warehousing", Khanna Publishing House.
- 4. Margaret H. Dunham, S. Sridhar, "Data Mining:Introductory and Advanced Topics" Pearson Education 5. Arun K. Pujari, "Data Mining Techniques" Universities Press.
- 5. Pieter Adriaans, Dolf Zantinge, "Data-Mining", Pearson Education

	KCA013: Software Project Management			
Course Outcome (CO) Bloom's Knowledge Level (KL)				
At the end of course, the student will be able to understand				
CO 1 Identify project planning objectives, along with various cost/effort estimation models.				
CO 2	Organize & schedule project activities to compute critical path for risk analysis	K ₃ K ₃		
CO 3	Monitor and control project activities.	K ₄ , K ₅		
CO 4	Formulate testing objectives and test plan to ensure good software quality under SEI-CMM	K ₆		
CO 5	Configure changes and manage risks using project management tools.	K ₂ , K ₄		
	DETAILED SYLLABUS	3-0-0		
Unit	Торіс	Proposed Lecture		
I	Project Evaluation and Project Planning: Importance of Software Project Management – Activities – Methodologies – Categorization of Software Projects –			
	Setting objectives – Management Principles – Management Control – Project portfolio Management – Cost-benefit evaluation technology – Risk evaluation – Strategic program Management – Stepwise Project Planning.			
II	Project Life Cycle and Effort Estimation: Software process and Process Models – Choice of Process models – Rapid Application development – Agile methods – Dynamic System Development Method – Extreme Programming– Managing interactive processes – Basics of Software estimation – Effort and Cost estimation techniques – COSMIC Full function points – COCOMO II – a Parametric Productivity Model.			
III	Activity Planning and Risk Management: Objectives of Activity planning – Project schedules – Activities – Sequencing and scheduling – Network Planning models – Formulating Network Model – Forward Pass & Backward Pass techniques – Critical path (CRM) method – Risk identification – Assessment – Risk Planning –Risk Management – PERT technique – Monte Carlo simulation – Resource Allocation – Creation of Critical paths – Cost schedules.	08		
IV	Project Management and Control: Framework for Management and control – Collection of data – Visualizing progress – Costmonitoring – Earned Value Analysis – Prioritizing Monitoring – Project tracking – Change control Software Configuration Management – Managing contracts – Contract Management.	08		
V	Staffing in Software Projects: Managing people – Organizational behavior – Best methods of staff selection – Motivation – The Oldham – Hackman job characteristic model – Stress – Health and Safety – Ethical and Professional concerns – Working in teams – Decision making – Organizational structures – Dispersed and Virtual teams – Communications genres – Communication plans –	08		
Suggest	Leadership.			

- 1. Bob Hughes, Mike Cotterell and Rajib Mall: "Software Project Management" Fifth Edition, McGraw Hill, New Delhi, 2012.
- 2. Robert K. Wysocki "Effective Software Project Management" Wiley Publication, 2011.
- 3. Walker Royce: "Software Project Management" Addison-Wesley, 1998.
- 4. Gopalaswamy Ramesh, "Managing Global Software Projects" McGraw Hill Education (India), FourteenthReprint 2013.
- 5. Koontz Harold & Weihrich Heinz, "Essentials of Management", McGraw Hill 5thEdition 2008.
- 6. Robbins and Coulter, "Management", Prentice Hall of India, 9th edition.
- 7. James A. F., Stoner, "Management", Pearson Education Delhi.
- 8. P. D. Chaturvedi, "Business Communication", Pearson Education.

	KCA014: Cloud Computing				
Course Outcome (CO) Bloom's Knowledge Level (KL)					
At the end of course, the student will be able to understand					
CO 1	Understand the concepts of Cloud Computing, key technologies,				
	strengths and limitations of cloud computing.				
CO 2	Develop the ability to understand and use the architecture to compute	K_{1}, K_{3}			
	and storage cloud, service and models.				
CO 3	Understand the application in cloud computing.	K_{4}, K_{5}			
CO 4	Learn the key and enabling technologies that help in the development of	K_3, K_4			
	cloud.				
CO 5	Explain the core issues of cloud computing such as resource	K_2, K_6			
	management and security.				
	DETAILED SYLLABUS	3-1-0			
Unit	Торіс	Proposed			
		Lecture			
I	Introduction: Cloud Computing – Definition of Cloud – Evolution of	08			
	Cloud Computing – Underlying Principles of Parallel and Distributed,				
	History of Cloud Computing - Cloud Architecture - Types of Clouds -				
	Business models around Clouds – Major Players in Cloud Computing-				
***	issues in Clouds - Eucalyptus - Nimbus - Open Nebula, CloudSim.				
II	Cloud Services: Types of Cloud services: Software as a Service-	08			
	Platform as a Service – Infrastructure as a Service - Database as a				
	Service - Monitoring as a Service - Communication as services. Service				
TIT	providers- Google, Amazon, Microsoft Azure, IBM, Sales force.				
III	Collaborating Using Cloud Services: Email Communication over the				
	Cloud - CRM Management - Project Management - William William St. 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
	Task Management – Calendar - Schedules - Word Processing – Presentation – Spreadsheet - Databases – Desktop - Social Networks and				
	Groupware.				
IV	Virtualization for Cloud: Need for Virtualization – Pros and cons of	08			
1 4		08			
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
V	· V1	08			
	= = -				
V	Virtualization – Types of Virtualization –System VM, Process VM, Virtual Machine monitor – Virtual machine properties - Interpretation and binary translation, HLL VM - supervisors – Xen, KVM, VMware, Virtual Box, Hyper-V. Security, Standards and Applications: Security in Clouds: Cloud security challenges – Software as a Service Security, Common Standards: The Open Cloud Consortium – The Distributed management Task Force – Standards for application Developers – Standards for Messaging – Standards for Security, End user access to cloud computing, Mobile Internet devices and the cloud. Hadoop – MapReduce – Virtual Box — Google App Engine – Programming Environment for Google App Engine	08			

- 1. David E.Y. Sarna, "Implementing and Developing Cloud Application", CRC press 2011.
- 2. Lee Badger, Tim Grance, Robert Patt-Corner, Jeff Voas, NIST, Draft cloud computing synopsis and recommendation, May 2011.
- 3. Anthony T Velte, Toby J Velte, Robert Elsenpeter, "Cloud Computing : A Practical Approach", Tata McGraw-Hill 2010.
- 4. Haley Beard, "Best Practices for Managing and Measuring Processes for On-demand Computing, Applications and Data Centers in the Cloud with SLAs", Emereo Pty Limited, July 2008.
- 5. G. J. Popek, R.P. Goldberg, "Formal requirements for virtualizable third generation Architectures, Communications of the ACM", No.7 Vol.17, July 1974

KCA015 : Compiler Design				
	Course Outcome (CO) Bloom's Knowledge Le	vel (KL)		
At the end	of course , the student will be able to:			
CO 1	Acquire knowledge of different phases and passes of the compiler and also able to use the compiler tools like LEX, YACC, etc. Students will also be able to design different types of compiler tools to meet the requirements of the realistic constraints of compilers.			
CO 2	Understand the parser and its types i.e. Top-Down and Bottom-up parsers and construction of LL, SLR, CLR, and LALR parsing table.	K_2, K_6		
CO 3	Implement the compiler using syntax-directed translation method and get knowledge about the synthesized and inherited attributes.	K ₄ , K ₅		
CO 4	Acquire knowledge about run time data structure like symbol table organization and different techniques used in that.	K_2, K_3		
CO 5	Understand the target machine's run time environment, its instruction set for code generation and techniques used for code optimization.	K_2, K_4		
	DETAILED SYLLABUS	3-0-0		
Unit	Торіс	Propose d Lecture		
I	Introduction to Compiler: Phases and passes, Bootstrapping, Finite state machines and regular expressions and their applications to lexical analysis, Optimization of DFA-Based Pattern Matchers implementation of lexical analyzers, lexical-analyzer generator, LEX compiler, Formal grammars and their application to syntax analysis, BNF notation, ambiguity, YACC. The syntactic specification of programming languages: Context free grammars, derivation and parse trees, capabilities of CFG.			
II	Basic Parsing Techniques: Parsers, Shift reduce parsing, operator precedence parsing, top down parsing, predictive parsers Automatic Construction of efficient Parsers: LR parsers, the canonical Collection of LR(0) items, constructing SLR parsing tables, constructing Canonical LR parsing tables, Constructing LALR parsing tables, using ambiguous			
Ш	grammars, an automatic parser generator, implementation of LR parsing tables. Syntax-directed Translation: Syntax-directed Translation schemes, Implementation of Syntax-directed Translators, Intermediate code, postfix notation, Parse trees & syntax trees, three address code, quadruple & triples, translation of assignment statements, Boolean expressions, statements that alter the flow of control, postfix translation, translation with a top down parser. More about translation: Array references in arithmetic expressions, procedures call, declarations and case statements.			
IV	Symbol Tables: Data structure for symbols tables, representing scope information. Run- Time Administration: Implementation of simple stack allocation scheme, storage allocation in block structured language. Error Detection & Recovery: Lexical Phase errors, syntactic phase errors semantic errors.			
V	Code Generation: Design Issues, the Target Language. Addresses in the Target Code, Basic Blocks and Flow Graphs, Optimization of Basic Blocks, Code Generator. Code optimization: Machine-Independent Optimizations, Loop optimization, DAG representation of basic blocks, value numbers and algebraic laws, Global Data-Flow analysis.	08		

Text books:

- 1. K. Muneeswaran, Compiler Design, First Edition, Oxford University Press.
- 2. J.P. Bennet, "Introduction to Compiler Techniques", Second Edition, Tata McGraw-Hill, 2003.
- 3. Henk Alblas and Albert Nymeyer, "Practice and Principles of Compiler Building with C", PHI, 2001.
- 4. Aho, Sethi & Ullman, "Compilers: Principles, Techniques and Tools", Pearson Education
- 5. V Raghvan, "Principles of Compiler Design", TMH
- 6. Kenneth Louden," Compiler Construction", Cengage Learning.
- 7. Charles Fischer and Ricard LeBlanc," Crafting a Compiler with C", Pearson Education

ELECTIVE-2

KCA021: Web Technology				
Course Outcome (CO) Bloom's Knowledge L				
At the end of course, the student will be able to:				
CO 1	CO 1 Apply the knowledge of HTML and CSS to develop web application and analyze the insights of internet programming to implement complete application over the web.		K3, K6	
CO 2	Understand analyze and apply the role of JavaScript	in the workings of the	K2, K3	
CO 3		s using servlet and JSP.	K_2, K_3	
CO 4	Develop Spring-based Java applications using Java configuration, annotation-based configuration, beans properties.		$K_2, K_{4,K6}$	
CO 5	Develop web application using Spring Boot and RESTF	ul Web Services	K_3, K_6	
	DETAILED SYLLABUS		3-1-0	
Unit	Topic		Proposed	
	WID D. L. L. L. LWID I	· C· · · · · · · · · · · · · · · · · ·	Lecture	
I	Web Page Designing: Introduction and Web Development Strategies, History of Web and Internet, Protocols Governing Web, HTML-Introduction, HTML Tags, HTML-Grouping Using Div & Span, HTML-Lists, HTML-Images, HTML-Hyperlink, HTML-Table, HTML-Iframe, HTML-Form, Introduction of CSS, CSS Syntax, External Style Sheet using < link >, Multiple Style Sheets, Value Lengths and Percentages, CSS-Selectors, CSS-Box Model, Floats, Clear, Introduction to Bootstrap.		08	
п	Scripting: Introduction to JavaScript, Creating Variables in JavaScript, Creating Functions in JavaScript, UI Events, Returning Data from Functions, Working with Conditions, looping in JavaScript, Block Scope Variables, Working with Objects, Creating Object using Object Literals, Manipulating DOM Elements with JavaScript			
III	Web Application development using JSP & Servlets: Servlet Overview and Architecture, Interface Servlet and the Servlet Life Cycle, Handling HTTP get Requests, Handling HTTP post Requests, Redirecting Requests to Other Resources, Session Tracking, Cookies, Session Tracking with Http Session. Java Server Pages (JSP): Introduction, Java Server Pages Overview, A First Java Server Page Example, Implicit Objects, Scripting, Standard Actions, Directives, Custom Tag Libraries.		08	
IV	Spring: Spring Core Basics-Spring Dependency Injection to Design patterns, Factory Design Pattern, Strategy Inversion of Control, AOP, Bean Scopes- Singleton, Protot Application, WebSocket, Auto wiring, Annotations, Life Configuration styles	Design pattern, Spring type, Request, Session,	08	
V	Spring Boot: Spring Boot-Spring Boot Configuration, Spring Boot Actuator, Spring Boot Build Systems, Spring Spring Boot Runners, Logger, BUILDING RESTFUL W. Controller, Request Mapping, Request Body, Path Variab GET, POST, PUT, DELETE APIs, Build Web Applications	g Boot Code Structure, VEB SERVICES, Rest le, Request Parameter,	08	

Text books:

- 1. Burdman, Jessica, "Collaborative Web Development" Addison Wesley
- 2. Xavier, C, "Web Technology and Design", New Age International
- 3. Ivan Bayross," HTML, DHTML, Java Script, Perl & CGI", BPB Publication
- 4. Bhave, "Programming with Java", Pearson Education
- 6. Hans Bergsten, "Java Server Pages", SPD O'Reilly
- 7. Naughton, Schildt, "The Complete Reference JAVA2", TMH
- 8. Craig Walls, "Spring Boot in Action"

	KCA022: Big Data			
	Course Outcome (CO) Bloom's Knowledge Level (KL)			
At the end of course, the student will be able to understand				
CO1	Demonstrate knowledge of Big Data Analytics concepts and its applications in business.	K_1, K_2		
CO2	Demonstrate functions and components of Map Reduce Framework and HDFS.	K_1, K_2		
CO3	Develop queries in NoSQL environment.	K ₆		
CO4	Explain process of developing Map Reduce based distributed processing applications.	K ₂ , K ₅		
CO5	Explain process of developing applications using HBASE, Hive, Pig etc.	K_2,K_5		
	DETAILED SYLLABUS	4-0-0		
Unit	Торіс	Proposed Lecture		
I	Introduction to Big Data: Types of digital data, history of Big Data innovation, introduction to Big Data platform, drivers for Big Data, Big Data architecture and characteristics, 5 Vs of Big Data, Big Data technology components, Big Data importance and applications, Big Data features – security, compliance, auditing and protection, Big Data privacy and ethics, Big Data Analytics, Challenges of conventional systems, intelligent data analysis, nature of data, analytic processes and tools, analysis vs reporting, modern data analytic tools.			
П	Hadoop: History of Hadoop, Apache Hadoop, the Hadoop Distributed File System, components of Hadoop, data format, analyzing data with Hadoop, scaling out, Hadoop streaming, Hadoop pipes, Hadoop Echo System. Map-Reduce: Map-Reduce framework and basics, how Map Reduce works, developing a Map Reduce application, unit tests with MR unit, test data and local tests, anatomy of a Map Reduce job run, failures, job scheduling, shuffle and sort, task execution, Map Reduce types, input formats, output formats, Map Reduce features, Real-world Map Reduce	08		
III	HDFS (Hadoop Distributed File System): Design of HDFS, HDFS concepts, benefits and challenges, file sizes, block sizes and block abstraction in HDFS, data replication, how does HDFS store, read, and write files, Java interfaces to HDFS, command line interface, Hadoop file system interfaces, data flow, data ingest with Flume and Scoop, Hadoop archives, Hadoop I/O: Compression, serialization, Avro and file-based data structures. Hadoop Environment: Setting up a Hadoop cluster, cluster specification, cluster setup and installation, Hadoop configuration, security in Hadoop, administering Hadoop, HDFS monitoring & maintenance, Hadoop benchmarks, Hadoop in the cloud	08		
IV	Hadoop Eco System and YARN: Hadoop ecosystem components, schedulers, fair and capacity, Hadoop 2.0 New Features – Name Node high availability, HDFS federation, MRv2, YARN, Running MRv1 in YARN. NoSQL Databases: Introduction to NoSQL MongoDB: Introduction, data types, creating, updating and deleing documents, querying, introduction to indexing, capped collections Spark: Installing spark, spark applications, jobs, stages and tasks, Resilient Distributed Databases, anatomy of a Spark job run, Spark on YARN SCALA: Introduction, classes and objects, basic types and operators, built-in control structures, functions and closures, inheritance.	08		
V	Hadoop Eco System Frameworks: Applications on Big Data using Pig, Hive and HBase Pig: Introduction to PIG, Execution Modes of Pig, Comparison of Pig with Databases, Grunt, Pig Latin, User Defined Functions, Data Processing operators, Hive - Apache Hive architecture and installation, Hive shell, Hive services, Hive	08		

metastore, comparison with traditional databases, HiveQL, tables, querying data and user defined functions, sorting and aggregating, Map Reduce scripts, joins & subqueries.

HBase – Hbase concepts, clients, example, Hbase vs RDBMS, advanced usage, schema design, advance indexing, Zookeeper – how it helps in monitoring a cluster, how to build applications with Zookeeper. IBM Big Data strategy, introduction to Infosphere, BigInsights and Big Sheets, introduction to Big SQL.

- 1. Michael Minelli, Michelle Chambers, and Ambiga Dhiraj, "Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Businesses", Wiley.
- 2. Big-Data Black Book, DT Editorial Services, Wiley.
- 3. Dirk deRoos, Chris Eaton, George Lapis, Paul Zikopoulos, Tom Deutsch, "Understanding Big Data Analytics for Enterprise Class Hadoop and Streaming Data", McGrawHill.
- 4. Thomas Erl, Wajid Khattak, Paul Buhler, "Big Data Fundamentals: Concepts, Drivers and Techniques", Prentice Hall.
- 5. Bart Baesens "Analytics in a Big Data World: The Essential Guide to Data Science and its Applications (WILEY Big Data Series)", John Wiley & Sons
- 6. Arshdeep Bahga, Vijay Madisetti, "Big Data Science & Analytics: A Hands On Approach", VPT
- 7. Anand Rajaraman and Jeffrey David Ullman, "Mining of Massive Datasets", CUP
- 8. Tom White, "Hadoop: The Definitive Guide", O'Reilly.
- 9. Eric Sammer, "Hadoop Operations", O'Reilly.
- 10. Chuck Lam, "Hadoop in Action", MANNING Publishers
- 11. Deepak Vohra, "Practical Hadoop Ecosystem: A Definitive Guide to Hadoop-Related Frameworks and Tools", Apress
- 12. E. Capriolo, D. Wampler, and J. Rutherglen, "Programming Hive", O'Reilly
- 13. Lars George, "HBase: The Definitive Guide", O'Reilly.
- 14. Alan Gates, "Programming Pig", O'Reilly.
- 15. Michael Berthold, David J. Hand, "Intelligent Data Analysis", Springer.
- 16. Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", John Wiley & sons.
- 17. Glenn J. Myatt, "Making Sense of Data", John Wiley & Sons
- 18. Pete Warden, "Big Data Glossary", O'Reilly

	VCA022 · C' · · · · · · · · · · · · · · · · ·				
	KCA023 : Simulation and Modelling				
Course Outcome (CO) Bloom's Knowledge Level (KL					
	At the end of course, the student will be able to understand				
CO 1	Study the concept of system, its components and types.	K_1			
CO 2	Understand and analyze nature and techniques of major simulation models.	K_2, K_4			
CO 3	Study and analyze the idea of continuous and discrete system simulation.	K_1, K_4			
CO 4	Understand the notion of system dynamics and system dynamics diagrams.	K_2			
CO 5	Finding critical path computation and understanding PERT networks	K_1, K_4			
	DETAILED SYLLABUS	3-1-0			
Unit	Торіс	Proposed			
	_	Lecture			
I	System definition and components, stochastic activities, continuous and discrete systems, System modeling, Types of models, static and dynamic physical models, static and dynamic mathematical models, full corporate model, types of system study.				
II	System simulation, Need of simulation, Basic nature of simulation, techniques of simulation, comparison of simulation and analytical methods, types of system Simulation, real time simulation, hybrid simulation, simulation of pursuit problem, single-server queuing system and an inventory problem, Monte-Carlo simulation, Distributed Lag model, Cobweb model.				
III	Simulation of continuous Systems, analog vs digital simulation, simulation of water reservoir system, simulation of a servo system, simulation of an auto-pilot. Discrete system simulation, fixed time step vs. event-to-event model, generation of random numbers, test of randomness, Monte-Carlo computation vs. stochastic simulation.	08			
IV	System dynamics, exponential growth models, exponential decay models, logistic curves, system dynamics diagrams, world model.	08			
V	Simulation of PERT networks, critical path computation, uncertainties in activity duration, resource allocation and consideration, Simulation languages, object oriented simulation				

- 1. Geoffrey Gordon, "System Simulation", PHI
- 2. Narsingh Deo, "System Simulation with digital computer", PHI.
- 3. Averill M. Law and W. David Kelton, "Simulation Modelling and Analysis", TMH.

KCA024: Software Testing & Quality Assurance				
	Course Outcome (CO) Bloom's Knowledge Level (Kl	[]		
	At the end of course, the student will be able to understand			
CO 1	Test the software by applying testing techniques to deliver a product free from			
	bugs.			
CO 2	Investigate the scenario and select the proper testing technique.	K_1, K_4		
CO 3	Explore the test automation concepts and tools and estimation of cost, schedule	K ₂ , K ₄		
	based on standard metrics.	142, 144		
CO 4	Understand how to detect, classify, prevent and remove defects.	K_1, K_2		
CO 5	Choose appropriate quality assurance models and develop quality. Ability to	K_3, K_4		
	conduct formal inspections, record and evaluate results of inspections.			
	DETAILED SYLLABUS	3-0-0		
Unit	Торіс	Proposed		
		Lecture		
I	Software Testing Basics: Testing as an engineering activity, Role of process	08		
	in software quality, Testing as a process, Basic definitions, Software testing			
	principles, The tester's role in a software development organization, Origins of			
	defects, Defect classes, The defect repository and test design, Defect examples,			
***	Developer / Tester support for developing a defect repository.	08		
II	Testing Techniques and Levels of Testing: Using White Box Approach to			
	Test design—Static Testing Vs. Structural Testing, Code Functional Testing,			
	Coverage and Control Flow Graphs, Using Black Box Approaches to Test			
	Case Design, Random Testing, Requirements based testing, Decision tables, State-based testing, Cause-effect graphing, Error guessing, Compatibility			
	testing, Levels of Testing -Unit Testing, Integration Testing, Defect Bash			
	Elimination. System Testing - Usability and Accessibility Testing,			
	Configuration Testing, Compatibility Testing.			
III	Software Test Automation And Quality Metrics: Software Test Automation,			
	Skills needed for Automation, Scope of Automation, Design and Architecture	08		
	for Automation, Requirements for a Test Tool, Challenges in Automation			
	Tracking the Bug, Debugging. Testing Software System Security - Six-Sigma,			
	TQM - Complexity Metrics and Models, Quality Management Metrics,			
	Availability Metrics, Defect Removal Effectiveness, FMEA, Quality Function			
	Deployment, Taguchi Quality Loss Function, Cost of Quality.			
IV	Fundamentals of Software Quality Assurance: SQA basics, Components of			
	the Software Quality Assurance System, software quality in business context,			
	planning for software quality assurance, product quality and process quality,			
	software process models, 7 QC Tools and Modern Tools.			
V	Software Assurance Models: Models for Quality Assurance, ISO-9000 series,	08		
	CMM, CMMI, Test Maturity Models, SPICE, Malcolm Baldrige Model- P-			
	CMM. Software Quality Assurance Translet Software Process DSD and TSD OO			
	Software Quality Assurance Trends: Software Process- PSP and TSP, OO			
	Methodology, Clean room software engineering, Defect Injection and			
	prevention, Internal Auditing and Assessments, Inspections & Walkthroughs,			
	Case Tools and their affect on Software Quality.			
Suggest	ad Raadings			

- 1. Srinivasan Desikan, Gopalaswamy Ramesh, "Software Testing: Principles and Practices", Pearson.
- 2. Daniel Galin, "Software Quality Assurance: From Theory to Implementation", Pearson

Addison Wesley.

- 3. Aditya P. Mathur, "Foundations of Software Testing", Pearson.
- 4. Paul Ammann, Jeff Offutt, "Introduction to Software Testing", Cambridge University Press.
- 5. Paul C. Jorgensen, "Software Testing: A Craftsman's Approach", Auerbach Publications.
- 6. William Perry, "Effective Methods of Software Testing", Wiley Publishing, Third Edition.
- 7. Renu Rajani, Pradeep Oak, "Software Testing Effective Methods, Tools and Techniques", Tata McGraw Hill.
- 8. Stephen Kan, "Metrics and Models in Software Quality", Addison Wesley, Second Edition.
- 9. S. A. Kelkar, "Software quality and Testing", PHI Learning Pvt, Ltd.
- 10. Watts S Humphrey, "Managing the Software Process", Pearson Education Inc.

	KCA025: Digital Image Processing				
Course Outcome (CO) Bloom's Knowledge Lev					
At the end of course, the student will be able to understand					
CO 1	Explain the basic concepts of two-dimensional signal acquisition, sampling, quantization and color model.				
CO 2	*				
CO 3	Apply and compare image restoration techniques in both spatial and frequency domain.	K_2, K_3			
CO 4	Compare edge based and region based segmentation algorithms for ROI extraction.	K ₃ , K ₄			
CO 5	Explain compression techniques and descriptors for image processing.	K ₂ , K ₃			
	DETAILED SYLLABUS	3-0-0			
Unit	Topic	Proposed			
		Lecture			
I	Digital Image Fundamentals: Steps in Digital Image Processing – Components – Elements of Visual Perception – Image Sensing and Acquisition – Image Sampling and Quantization – Relationships between pixels – Color image fundamentals – RGB, HSI models, Two-dimensional mathematical preliminaries, 2D transforms – DFT, DCT.				
II	Image Enhancement: Spatial Domain: Gray level transformations – Histogram processing – Basics of Spatial Filtering–Smoothing and Sharpening Spatial Filtering, Frequency Domain: Introduction to Fourier Transform–Smoothing and Sharpening frequency domain filters – Ideal, Butterworth and Gaussian filters, Homomorphic filtering, Color image enhancement.	08			
III	Image Restoration: Image Restoration – degradation model, Properties, Noise models – Mean Filters – Order Statistics –Adaptive filters – Band reject Filters – Band pass Filters – Notch Filters – Optimum Notch Filtering – Inverse Filtering – Wiener filtering	08			
IV	Image Segmentation: Edge detection, Edge linking via Hough transform – Thresholding – Region based segmentation – Region growing – Region splitting and merging – Morphological processing- erosion and dilation, Segmentation by morphological watersheds – basic concepts – Dam construction – Watershed segmentation algorithm.	08			
V	Image Compression and Recognition: Need for data compression, Huffman, Run Length Encoding, Shift codes, Arithmetic coding, JPEG standard, MPEG. Boundary representation, Boundary description, Fourier Descriptor, Regional Descriptors – Topological feature, Texture – Patterns and Pattern classes – Recognition based on matching.	08			

- 1. Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson, Third Edition, 2010.
- 2. Anil K. Jain, "Fundamentals of Digital Image Processing", Pearson, 2002.
- 3. Kenneth R. Castleman, "Digital Image Processing" Pearson, 2006.
- 4. D, E. Dudgeon and R M. Mersereau, "Multidimensional Digital Signal Processing", Prentice Hall Professional Technical Reference, 1990.
- 5. William K. Pratt, "Digital Image Processing" John Wiley, New York, 2002.
- 6. Milan Sonka et al, "Image processing, analysis and machine vision Brookes/Cole", Vikas Publishing House, 2nd edition,1999.

KCA351: Artificial Intelligence Lab				
	Course Outcome (CO) Bloom's Knowledge Level (KL)			
	At the end of course, the student will be able to understand			
CO 1	CO 1 Study and understand AI tools such as Python / MATLAB. K ₁ ,K ₂			
CO 2 Apply AI tools to analyze and solve common AI problems. K ₃ , K ₄		K ₃ , K ₄		
CO 3	CO 3 Implement and compare various AI searching algorithms. K ₆		K_6	
CO 4	CO 4 Implement various machine learning algorithms. K ₆			
CO 5	CO 5 Implement various classification and clustering techniques. K ₆			
DETAILED CYLLADIC				

DETAILED SYLLABUS

- 1. Installation and working on various AI tools such as Python / MATLAB.
- 2. Programs to solve basic AI problems.
- 3. Implementation of different AI searching techniques.
- 4. Implementation of different game playing techniques.
- 5. Implementation of various knowledge representation techniques.
- 6. Program to demonstrate the working of Bayesian network.
- 7. Implementation of pattern recognition problems such as handwritten character/ digit recognition, speech recognition, etc.
- 8. Implementation of different classification techniques.
- 9. Implementation of various clustering techniques.
- 10. Natural language processing tool development.

Note:

The Instructor may add/delete/modify/tune experiments, wherever he/she feels in a justified manner.

KCA352: Software Engineering Lab					
	Course Outcome (CO) Bloom's Knowledge Level (KL)				
	At the end of course, the	student will be able to understand			
CO 1		and incompleteness from a requirements	K_2, K_4		
	specification and state functional and	non-functional requirement.			
CO 2	Identify different actors and use cases from a given problem statement				
	and draw use case diagram to associate use cases with different types of				
	relationship.				
CO 3	Draw a class diagram after identifying classes and association among them.				
CO 4	Graphically represent various UML	diagrams and associations among them	K_4, K_5		
	and identify the logical sequence of	f activities undergoing in a system, and			
	represent them pictorially.				
CO 5	Able to use modern engineering tools	s for specification, design, implementation	K ₃ , K ₄		
	and testing.				
DEFENIT DE CANALADATO					

DETAILED SYLLABUS

For any given case/ problem statement do the following;

- 1. Prepare a SRS document in line with the IEEE recommended standards.
- 2. Draw the use case diagram and specify the role of each of the actors.
- 3. Prepare state the precondition, post condition and function of each use case.
- 4. Draw the activity diagram.
- 5. Identify the classes. Classify them as weak and strong classes and draw the class diagram.
- 6. Draw the sequence diagram for any two scenarios.
- 7. Draw the collaboration diagram.
- 8. Draw the state chart diagram.
- 9. Draw the component diagram.
- 10. Draw the deployment diagram.

Note: The Instructor may add/delete/modify/tune experiments, wherever he/she feels in a justified manner. Draw the deployment diagram

SECOND YEAR SYLLABUS SEMESTER-IV

ELECTIVE-3

KCA031: Privacy and Security in Online Social Media				
Course Outcome (CO) Bloom's Knowledge Leve				
At the	end of course, the student will be able to:	1		
CO 1	Understand working of online social networks	K2		
CO 2	Describe privacy policies of online social media	K2		
CO 3	Analyse countermeasures to control information sharing in Online social networks.	К3		
CO 4	Apply knowledge of identity management in Online social networks	К3		
CO 5	Compare various privacy issues associated with popular social media.	К3		
	DETAILED SYLLABUS	3-1-0		
Unit	Торіс	Proposed Lecture		
I	Introduction to Online Social Networks: Introduction to Social Networks, From offline to Online Communities, Online Social Networks, Evolution of Online Social Networks, Analysis and Properties, Security Issues in Online Social Networks, Trust Management in Online Social Networks, Controlled Information Sharing in Online Social Networks, Identity Management in Online Social Networks, data collection from social networks, challenges, opportunities, and pitfalls in online social networks, APIs; Collecting data from Online Social Media.	08		
II	Trust Management in Online Social Networks: Trust and Policies, Trust and Reputation Systems, Trust in Online Social, Trust Properties, Trust Components, Social Trust and Social Capital, Trust Evaluation Models, Trust, credibility, and reputations in social systems; Online social media and Policing, Information privacy disclosure, revelation, and its effects in OSM and online social networks; Phishing in OSM & Identifying fraudulent entities in online social networks	08		
III	Controlled Information Sharing in Online Social Networks: Access Control Models, Access Control in Online Social Networks, Relationship-Based Access Control, Privacy Settings in Commercial Online Social Networks, Existing Access Control Approaches	08		
IV	Identity Management in Online Social Networks: Identity Management, Digital Identity, Identity Management Models: From Identity 1.0 to Identity 2.0, Identity Management in Online Social Networks, Identity as Self-Presentation, Identity thefts, Open Security Issues in Online Social Networks	08		
V	Case Study: Privacy and security issues associated with various social media such as Facebook, Instagram, Twitter, LinkedIn etc.	08		

Textbooks:

- 1. Security and Privacy-Preserving in Social Networks, Editors: Chbeir, Richard, Al Bouna, Bechara (Eds.), Spinger, 2013.
- 2. Security and Trust in Online Social Networks, Barbara Carminati, Elena Ferrari, Marco Viviani, Morgan & Claypool publications.
- 3. Security and Privacy in Social Networks, Editors: Altshuler, Y., Elovici, Y., Cremers, A.B., Aharony, N., Pentland, A. (Eds.), Springer, 2013
- 4. Security and privacy preserving in social networks, Elie Raad & Richard Chbeir, Richard Chbeir& Bechara Al Bouna, 2013
- 5. Social Media Security: Leveraging Social Networking While Mitigating Risk, Michael Cross, 2013

KCA032: Soft Computing			
Course Outcome (CO) Bloom's Knowledge Level (KL)			
At the end of course, the student will be able to understand			
CO 1	Recognize the need of soft computing and study basic concepts and techniques of soft computing.		K ₁ , K ₂
CO 2	Understand the basic concepts of artificial neural network to used neural networks.		K_2, K_4
CO 3	Apply fuzzy logic to handle uncertainty in various real-world p	problems.	K_3
CO 4	Study various paradigms of evolutionary computing and algorithm in solving optimization problems.	evaluate genetic	K_1, K_5
CO 5	Apply hybrid techniques in applications of soft computing.		K_3
	DETAILED SYLLABUS		3-0-0
Unit	Торіс		Proposed Lecture
I	Introduction to Soft Computing: Introduction, Compar computing, Concept of learning and adaptation, Constituents of Applications of soft computing. Artificial Neural Networks: Basic concepts of neural network Biological neural network, History of artificial neural network blocks of an artificial neuron, Neural network architect functions, Characteristics and limitation of neural networks.	f soft computing, ks, Human brain, s, Basic building	08
II	Artificial Neural Networks: Learning methods - Supervised Reinforcement, Hebbian, Gradient descent, Competitive, Stock Major classes of neural networks: Perceptron network perceptron model, Back-propagation network, Radial basis for Recurrent neural network, Hopfield networks, Kohonen self-omaps.	nastic. orks, Multilayer unction network,	08
III	Fuzzy Logic: Introduction to Fuzzy Logic, Comparison version of classical sets, Operations on classical sets, Prosets, Operations on fuzzy sets, Classical relations, Fuzzy relation types of fuzzy membership functions, Fuzzy arithmetic, Fuzzy Fuzzy Systems: Crisp logic, Predicate logic, Fuzzy logic, Fuzzy Inference rules, Fuzzy inference systems- Fuzzificate Defuzzification, Types of inference engines.	operties of fuzzy ons, Features and measures. zzy propositions,	08
V	Evolutionary Computing: Introduction, Evolutionary algor evolutionary process, Paradigms of evolutionary computalgorithm and Genetic programming, Evolutionary strategic programming. Genetic Algorithm: Introduction, Traditional optimization techniques, Comparison with traditional algorithms, Operate Selection, Crossover and Mutation, Classification of Genetic algorithms.	ting – Genetic es, Evolutionary on and search tions- Encoding, lgorithm.	08
V	Hybrid Soft Computing Techniques: Introduction, Classific systems, Neuro-fuzzy hybrid systems, Neuro-genetic hybrid genetic hybrid systems. Other Soft Computing Techniques: Tabu Search, An	systems, Fuzzy-	08

optimization, Swarm Intelligence.

- 1. Sivanandam S.N. and Deepa S.N., "Principles of Soft Computing", Wiley-India.
- 2. Rajasekaran S. and Vijayalakshmi Pai G.A., "Neural Networks, Fuzzy Logic and Genetic Algorithms- Synthesis and Applications", PHI Learning.
- 3. Chakraverty S., Sahoo D.M. and Mahato N. R., "Concepts of Soft Computing- Fuzzy and ANN with Programming", Springer.
- 4. Kaushik S. and Tiwari S., "Soft Computing Fundamentals, Techniques and Applications', McGrawHill Education.
- 5. Jang J.-S.R., Sun C.-T. and Mizutani E., "Neuro-Fuzzy and Soft Computing", Prentice-Hall of India.
- 6. Karray F. O. and Silva C. D., "Soft Computing and Intelligent Systems Design Theory, Tools and Applications", Pearson Education.
- 7. Freeman J. A. and Skapura D. M., "Neural Networks: Algorithms, Applications and Programming Techniques", Pearson.
- 8. Siman H., "Neural Netowrks", Prentice Hall of India.

	KCA033: Pattern Recognition			
	Course Outcome (CO) Bloom's Knowledge Level (KI	L)		
	At the end of course, the student will be able to understand			
CO 1	Study of basics of Pattern recognition. Understand the designing principles and	K_1, K_2		
	Mathematical foundation used in pattern recognition.			
CO 2	Analysis the Statistical Patten Recognition.	K_3 , K_4		
CO 3	Understanding the different Parameter estimation methods.	K_1, K_2		
CO 4	Understanding the different Nonparametric Techniques.	$K_1, K_{2,}$		
CO 5	Understand and Make use of unsupervised learning and Clustering in Pattern	$K_2 K_{3}, K_4$		
	recognition.			
	DETAILED SYLLABUS	3-0-0		
Unit	Торіс	Proposed		
	•			
I	Introduction: Basics of pattern recognition, Design principles of pattern			
	recognition system, Learning and adaptation, Pattern recognition approaches,			
	Mathematical foundations – Linear algebra, Probability Theory, Expectation,			
	mean and covariance, Normal distribution, multivariate normal densities, Chi			
	squared test.			
II	Statistical Patten Recognition: Bayesian Decision Theory, Classifiers,			
	Normal density and discriminant functions			
III	Parameter estimation methods: Maximum-Likelihood estimation, Bayesian			
	Parameter estimation, Dimension reduction methods - Principal Component			
	Analysis (PCA), Fisher Linear discriminant analysis, Expectation-			
	maximization (EM), Hidden Markov Models (HMM), Gaussian mixture			
	models.			
IV				
	Nearest Neighbor Estimation, Nearest Neighbor Rule, Fuzzy classification.			
V	Unsupervised Learning & Clustering: Criterion functions for clustering,			
	Clustering Techniques: Iterative square - error partitional clustering – K means,			
	agglomerative hierarchical clustering, Cluster validation.			

- 1. Duda R. O., Hart P. E. and Stork D. G., "Pattern Classification", John Wiley.
- 2. Bishop C. M., "Neural Network for Pattern Recognition", Oxford University Press.
- 3. Singhal R., "Pattern Recognition: Technologies & Applications", Oxford University Press.
- 4. Theodoridis S. and Koutroumbas K., "Pattern Recognition", Academic Press.

KCA034: Data Analytics			
Course Outcome (CO) Bloom's Knowledge Level (KL)			
At the end of course, the student will be able to understand			
CO1	Describe the life cycle phases of Data Analytics through discovery, planning and building.	K_1, K_2	
CO2	Understand and apply Data Analysis Techniques.	K_2, K_3	
CO3	Implement various Data streams.	K ₃	
CO4	Understand item sets, Clustering, frame works & Visualizations.	K_2	
CO5	Apply R tool for developing and evaluating real time applications.	K_3, K_5, K_6	
	DETAILED SYLLABUS	4-0-0	
Unit	Торіс	Proposed Lecture	
I	Introduction to Data Analytics: Sources and nature of data, classification of data (structured, semi-structured, unstructured), characteristics of data, introduction to Big Data platform, need of data analytics, evolution of analytic scalability, analytic process and tools, analysis vs reporting, modern data analytic tools, applications of data analytics. Data Analytics Lifecycle: Need, key roles for successful analytic projects, various phases of data analytics lifecycle – discovery, data preparation, model planning, model building, communicating results, operationalization	08	
II	Data Analysis: Regression modeling, multivariate analysis, Bayesian modeling, inference and Bayesian networks, support vector and kernel methods, analysis of time series: linear systems analysis & nonlinear dynamics, rule induction, Neural Networks: Learning and generalisation, competitive learning, principal component analysis and neural networks, fuzzy logic: extracting fuzzy models from data, fuzzy decision trees, stochastic search methods.	08	
III	Mining Data Streams: Introduction to streams concepts, stream data model and architecture, stream computing, sampling data in a stream, filtering streams, counting distinct elements in a stream, estimating moments, counting oneness in a window, decaying window, Real-time Analytics Platform (RTAP) applications, Case studies – Real time sentiment analysis, stock market predictions.	08	
IV	Frequent Itemsets and Clustering: Mining frequent itemsets, market based modelling, Apriori algorithm, handling large data sets in main memory, limited pass algorithm, counting frequent itemsets in a stream, Clustering techniques: hierarchical, K-means, clustering high dimensional data, CLIQUE and ProCLUS, frequent pattern based clustering methods, clustering in non-euclidean space, clustering for streams and parallelism.	08	
V	Frame Works and Visualization: MapReduce, Hadoop, Pig, Hive, HBase, MapR, Sharding, NoSQL Databases, S3, Hadoop Distributed File Systems, Visualization: visual data analysis techniques, interaction techniques, systems and applications. Introduction to R - R graphical user interfaces, data import and export, attribute and data types, descriptive statistics, exploratory data analysis, visualization before analysis, analytics for unstructured data.	08	

- Michael Berthold, David J. Hand, "Intelligent Data Analysis", Springer.
 Anand Rajaraman and Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press.
- 3. Bill Franks, "Taming the Big Data Tidal wave: Finding Opportunities in Huge Data Streams

- with Advanced Analytics", John Wiley & Sons.
- 4. John Garrett, "Data Analytics for IT Networks : Developing Innovative Use Cases", Pearson Education.
- 5. Michael Minelli, Michelle Chambers, and Ambiga Dhiraj, "Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Businesses", Wiley.
- 6. David Dietrich, Barry Heller, Beibei Yang, "Data Science and Big Data Analytics", EMC Education Series, John Wiley.
- 7. Frank J Ohlhorst, "Big Data Analytics: Turning Big Data into Big Money", Wiley and SAS Business Series.
- 8. Colleen Mccue, "Data Mining and Predictive Analysis: Intelligence Gathering and Crime Analysis", Elsevier.
- 9. Michael Berthold, David J. Hand," Intelligent Data Analysis", Springer.
- 10. Paul Zikopoulos, Chris Eaton, Paul Zikopoulos, "Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data", McGraw Hill.
- 11. Trevor Hastie, Robert Tibshirani, Jerome Friedman, "The Elements of Statistical Learning", Springer.
- 12. Mark Gardner, "Beginning R: The Statistical Programming Language", Wrox Publication.
- 13. Pete Warden, "Big Data Glossary", O'Reilly.
- 14. Glenn J. Myatt, "Making Sense of Data", John Wiley & Sons.
- 15. Peter Bühlmann, Petros Drineas, Michael Kane, Mark van der Laan, "Handbook of Big Data", CRC Press.
- 16. Jiawei Han, Micheline Kamber "Data Mining Concepts and Techniques", Second Edition, Elsevier.

KCA035: Software Quality Engineering		
Course Outcome (CO) Bloom's Knowledge Le		
At the	end of course, the student will be able to:	
CO 1	Understand basic concepts of Software Quality along with its documents and process	K2
CO 2	Apply knowledge of Software Quality in various types of software	К3
CO 3	Compare the various reliability models for different scenarios	K4
CO 4		K2
CO 5	Make use of various testing techniques in software implementation	К3
	DETAILED SYLLABUS	3-1-0
Unit	Торіс	Proposed Lecture
I	Software Quality : Definition, Software Quality Attributes and Specification, Cost of Quality, Defects, Faults, Failures, Defect Rate and Reliability, Defect Prevention, Reduction, and Containment, Overview of Different Types of Software Review, Introduction to Measurement and Inspection Process, Documents and Metrics.	08
II	Software Quality Metrics Product Quality Metrics: Defect Density, Customer Problems Metric, Customer Satisfaction Metrics, Function Points, In-Process Quality Metrics: Defect Arrival Pattern, Phase-Based Defect Removal Pattern, Defect Removal Effectiveness, Metrics for Software Maintenance: Backlog Management Index, Fix Response Time, Fix Quality, Software Quality Indicators.	08
III	Software Quality Management and Models: Modeling Process, Software Reliability Models: The Rayleigh Model, Exponential Distribution and Software Reliability Growth Models, Software Reliability Allocation Models, Criteria for Model Evaluation, Software Quality Assessment Models: Hierarchical Model of Software Quality Assessment.	08
IV	Software Quality Assurance : Quality Planning and Control, Quality Improvement Process, Evolution of Software Quality Assurance (SQA), Major SQA Activities, Major SQA Issues, Zero Defect Software, SQA Techniques, Statistical Quality Assurance, Total Quality Management, Quality Standards and Processes.	08
V	Software Verification, Validation & Testing: Verification and Validation, Evolutionary Nature of Verification and Validation, Impracticality of Testing all Data and Paths, Proof of Correctness, Software Testing, Functional, Structural and Error-Oriented Analysis & Testing, Static and Dynamic Testing Tools, Characteristics of Modern Testing Tools.	08

Text books:

- 1. Jeff Tian, Software Quality Engineering (SQE), Wiley-Interscience, 2005; ISBN 0-471-71345-7
- 2. Metrics and Models in Software Quality Engineering, Stephen H. Kan, AddisonWesley (2002), ISBN: 0201729156
- 3. Norman E. Fenton and Shari Lawrence Pfleeger, "Software Metrics" Thomson, 2003
- 4. Mordechai Ben Menachem and Garry S.Marliss, "Software Quality", Thomson Asia Pte Ltd, 2003.

ELECTIVE-4

KCA041: Blockchain Architecture					
Course Outcome (CO) Bloom's Knowledge Level (KL)					
	At the end of course, the student will be able to understand				
CO1	Study and understand basic concepts of blockchain architecture.	K_1, K_2			
CO2	Analyze various requirements for consensus protocols.	K_4			
CO3	Apply and evaluate the consensus process.	K_3, K_5			
CO4	Understand the concepts of Hyperledger fabric.	K_1			
CO5	Analyze and evaluate various use cases in financial software and supply chain.	K_4, K_5			
	DETAILED SYLLABUS	4-0-0			
Unit	Торіс	Proposed			
		Lecture			
I	Introduction to Blockchain: Digital Money to Distributed Ledgers, Design	08			
	Primitives: Protocols, Security, Consensus, Permissions, Privacy.				
	Blockchain Architecture and Design: Basic crypto primitives: Hash, Signature,				
	Hashchain to Blockchain, Bitcoin Basic, Basic consensus mechanisms.				
II	Consensus: Requirements for the consensus protocols, Proof of Work (PoW),				
	Scalability aspects of Blockchain consensus protocols, distributed consensus, consensus in Bitcoin.				
	Permissioned Blockchains: Design goals, Consensus protocols for Permissioned				
	Blockchains				
III	Hyperledger Fabric: Decomposing the consensus process, Hyperledger fabric	08			
111	components.				
	Chaincode Design and Implementation Hyperledger Fabric: Beyond				
	Chaincode: fabric SDK and Front End, Hyperledger composer tool.				
IV	Use case 1: Blockchain in Financial Software and Systems (FSS): (i)				
	Settlements, (ii) KYC, (iii) Capital markets, (iv) Insurance.				
	Use case 2: Blockchain in trade/supply chain: (i) Provenance of goods, visibility,				
	trade/supply chain finance, invoice management discounting, etc.				
V	Use case 3: Blockchain for Government: (i) Digital identity, land records and				
	other kinds of record keeping between government entities, (ii) public				
	distribution system social welfare systems, Blockchain Cryptography, Privacy				
	and Security on Blockchain				
Cuaran	ad Doodings				

- 1. Andreas Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies", O'Reilly
- 2. Melanie Swa, "Blockchain", O'Reilly
- 3. "Hyperledger Fabric", https://www.hyperledger.org/projects/fabric
- 4. Bob Dill, David Smits, "Zero to Blockchain An IBM Redbooks course", https://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/crse0401.html

KCA042: Neural Networks				
Course Outcome (CO) Bloom's Knowledge Level (KL)				
At the end of course, the student will be able to understand				
CO 1	Study of basic concepts of Neuro Computing, Neuroscience and ANN. Understand the			
	different supervised and unsupervised and neural networks performance.			
CO 2	Study of basic Models of neural network. Understand the Perception network. and			
	Compare neural networks and their algorithm.			
CO 3	Study and Demonstrate different types of neural network. Make use of neural networks for specified problem domain.	$K_2 K_{3,} K_4$		
CO 4	Understand and Identify basic design requirements of recurrent network and Self-	K_1, K_2		
	organizing feature map.	11, 112		
CO 5	Able to understand the some special network. Able to understand the concept of Soft	K_1 , K_2 K_3		
	computing.			
	DETAILED SYLLABUS	3-0-0		
Unit	Topic	Proposed		
		Lecture		
I	Neurocomputing and Neuroscience: The human brain, biological neurons, neural	08		
	processing, biological neural network. Artificial Neural Networks: Introduction, historical notes, neuron model, knowledge			
	representation, comparison with biological neural network, applications.			
	Learning process: Supervised learning, unsupervised learning, error correction			
	learning, competitive learning, adaptation learning, Statistical nature of the learning			
	process.			
II	Basic Models: McCulloch-Pitts neuron model, Hebb net, activation functions,			
	aggregation functions.			
	Perceptron networks: Perceptron learning, single layer perceptron networks, multilayer perceptron networks.			
	Least mean square algorithm, gradient descent rule, nonlinearly separable problems			
	and bench mark problems in NN.			
III	Multilayer neural network: Introduction, comparison with single layer networks.			
	Back propagation network: Architecture, back propagation algorithm, local minima			
	and global minima, heuristics for making back propagation algorithm performs better,			
	applications.			
	Radial basis function network: Architecture, training algorithm, approximation			
	properties of RBF networks, comparison of radial basis function network and back			
IV	propagation networks. Recurrent network: Introduction, architecture and types.			
1,4	Self-organizing feature map: Introduction, determining winner, Kohonen Self	08		
	Organizing feature maps (SOM) architecture, SOM algorithm, properties of feature			
	map; Learning vector quantization-architecture and algorithm.			
	Principal component and independent component analysis.			
V	Special networks: Cognitron, Support vector machines. Complex valued NN and	08		
	complex valued BP.			
	Soft computing: Introduction, Overview of techniques, Hybrid soft computing			
	techniques.			
l Suggesta	ed Readings:			

- 1. Kumar S., "Neural Networks- A Classroom Approach", McGraw Hill.
- 2. Haykin S., "Neural Networks A Comprehensive Foundation", Pearson Education.
- 3. Yegnanarayana B. "Artificial Neural Networks", Prentice Hall of India.
- 4. Freeman J. A., "Neural Networks", Pearson Education.
- 5. James F., "Neural Networks Algorithms, Applications and Programming Techniques", Pearson Education.

KCA043: Internet of Things				
Course Outcome (CO) Bloom's Knowledge Le				
At the end of course, the student will be able to understand				
CO 1	CO 1 Demonstrate basic concepts, principles and challenges in IoT.			
CO 2	Illustrate functioning of hardware devices and sensors used for IoT.	K2		
CO 3	Analyze network communication aspects and protocols used in IoT.	K4		
CO 4	Apply IoT for developing real life applications using Ardunio programming.	К3		
CP 5	To develop IoT infrastructure for popular applications	K_2, K_3		
	DETAILED SYLLABUS	3-1-0		
Unit	Торіс	Proposed Lecture		
I	Internet of Things (IoT): Vision, Definition, Conceptual Framework, Architectural view, technology behind IoT, Sources of the IoT, M2M Communication, IoT Examples. Design Principles for Connected Devices: IoT/M2M systems layers and design standardization, communication technologies, data enrichment and consolidation, ease of designing and affordability	08		
II	Hardware for IoT: Sensors, Digital sensors, actuators, radio frequency identification (RFID) technology, wireless sensor networks, participatory sensing technology. Embedded Platforms for IoT: Embedded computing basics, Overview of IOT supported Hardware platforms such as Arduino, NetArduino, Raspberry pi, Beagle Bone, Intel Galileo boards and ARM cortex.	08		
III	Network & Communication aspects in IoT: Wireless Medium access issues, MAC protocol survey, Survey routing protocols, Sensor deployment & Node discovery, Data aggregation & dissemination	08		
IV	Programming the Ardunio: Ardunio Platform Boards Anatomy, Ardunio IDE, coding, using emulator, using libraries, additions in ardunio, programming the ardunio for IoT.	08		
V	Challenges in IoT Design challenges: Development Challenges, Security Challenges, Other challenges IoT Applications: Smart Metering, E-health, City Automation, Automotive Applications, home automation, smart cards, communicating data with H/W units, mobiles, tablets, Designing of smart street lights in smart city.	08		

Text books:

- 1. Olivier Hersent, David Boswarthick, Omar Elloumi "The Internet of Things key applications and protocols", willey
- 2. Jeeva Jose, Internet of Things, Khanna Publishing House
- 3. Michael Miller "The Internet of Things" by Pearson
- 4. Raj Kamal "INTERNET OF THINGS", McGraw-Hill, 1ST Edition, 2016
- 5. ArshdeepBahga, Vijay Madisetti "Internet of Things (A hands on approach)" 1ST edition, VPI publications, 2014
- 6. Adrian McEwen, Hakin Cassimally "Designing the Internet of Things" Wiley India

	KCA044: Modern Application Development			
Course Outcome (CO) Bloom's Knowledge Level (KL)				
At the	end of course, the student will be able to:			
CO 1	Understand the fundamental of Kotlin Programing for Android Application Development.			
CO 2	Describe the UI Layout and architecture of Android Operating System.	К3		
CO 3	Designing android application using Jetpack Library based on MVVM Architecture.	K6		
CO 4	Developing android application based on REST API using Volley and Retrofit Library.	K6		
CO 5	Ability to debug the Performance and Security of Android Applications.	K5		
	DETAILED SYLLABUS	3-1-0		
Unit	Торіс	Proposed Lecture		
I	Kotlin Fundamental: Introduction to Kotlin, Basic Syntax, Idioms, Coding Conventions, Basics, Basic Types, Packages, Control Flow, Returns and Jumps, Classes and Objects, Classes and Inheritance, Properties and Fields, Interfaces, Visibility Modifiers, Extensions, Data Classes, Generics, Nested Classes, Enum Classes, Objects, Delegation, Delegated Properties, Functions and Lambdas, Functions, Lambdas, Inline Functions, Higher-Order Functions, Scope Functions, Collections, Ranges, Type Checks and Casts, This expressions, Equality, Operator overloading, Null Safety, Exceptions, Annotations, Reflection.	08		
II	Android Fundamental: Android Architecture: Introduction to Android, Layouts, Views and Resources, Activities and Intents, Activity Lifecycle and Saving State, Implicit or Explicit Intents. User Interaction and Intuitive Navigation: Material Design, Theme, Style and Attributes, Input Controls, Menus, Widgets, Screen Navigation, Recycler View, ListView, Adapters, Drawables, Notifications.	08		
III	Storing, Sharing and Retrieving Data in Android Applications: Overview to storing data, shared preferences, App settings, Store and query data in Android's SQLite database, Content Providers, Content Resolver, Loading data using loaders. Jetpack Components: Fragments, Jetpack Navigation, Lifecycle, Lifecycle Observer, Lifecycle Owner, View Model, View Model Factory, View Model Provider, LiveData, Room API, Data Binding, View Binding, MVVM Architecture Basics	08		
IV	Asynchronous Data Handling, Networking and Files: Asynchronous Task, Coroutines, API Handling, JSON Parsing, Volley Library, Retrofit Library, File Handling, HTML and XML Parsing, Broadcast receivers, Services	08		

,	V	Permissions, Performance and Security: Firebase, AdMob, APK Singing, Publish App, Packaging and deployment, Google Maps, GPS and Wi-Fi, Download Manager, Work Manager, Alarms, Location, Map and Sensors, APK Singing, Publish App	08

Text books:

- 1. Meier R., "Professionai Android 2 Application Development", Wiley.
- 2. Hashimi S., KomatineniS. and MacLeanD., "Pro Android 2", Apress.
- 3. Murphy M., "Beginning Android 2", Apress.
- 4. Delessio C. and Darcey L., "Android Application Development", Pearson Education.
- 5. DiMarzio J.F., "Android a Programming Guide", Tata McGraw Hill.

KCA045: Distributed Database Systems				
Course Outcome (CO) Bloom's Knowledge Level (F				
At the end of course, the student will be able to:				
CO 1	Understand theoretical and practical aspects of distributed database systems.			
CO 2	Study and identify various issues related to the devidatabase system	velopment of distributed	К3	
CO 3	Understand the design aspects of object-oriented data development	base system and related	K4	
CO 4	Equip students with principles and knowledge of distribu	ted reliability.	К3	
CO 5	Equip students with principles and knowledge of par databases.	rallel and object-oriented	K5	
	DETAILED SYLLABUS		4-0-0	
Unit	Торіс		Proposed Lecture	
I	Introduction: Distributed Data Processing, Distributed Promises of DDBSs, Problem areas. Distributed Architectural Models for Distributed DBMS, DDMBS Database Design: Alternative Design Strategies, Distributed Tragmentation, Allocation.	d DBMS Architecture: Architecture. Distributed	08	
II	Query processing and decomposition: Query characterization of query processors, layers of q decomposition, localization of distributed data. Distributed optimization, centralized query optimization optimization algorithms.	uery processing, query uted query Optimization:	08	
III	Transaction Management: Definition, properties of transactions, distributed concurrency control: Serializab mechanisms & algorithms, time - stamped & optimi Algorithms, deadlock Management.	ility, concurrency control	08	
IV	Distributed DBMS Reliability: Reliability concept tolerance in distributed systems, failures in Distributed D reliability protocols, site failures and network partition Systems: Parallel database system architectures, parallel query processing, load balancing, database clusters.	DBMS, local & distributed oning. Parallel Database	08	
V	Distributed object Database Management System concepts and models, object distributed design, are management, distributed object storage, object query Pro Object Oriented Data Model: Inheritance, obj programming languages, persistence of objects, com ORDBMS	chitectural issues, object cessing. ect identity, persistent	08	

Text books:

M. Tamer OZSU and Patuck Valduriez: Principles of Distributed Database Systems, Pearson Edn. Asia, 2001. 2. Stefano Ceri and Giuseppe Pelagatti: Distributed Databases, McGraw Hill. REFERENCE BOOKS: 1. Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer Widom: "Database Systems: The Complete Book", Second Edition, Pearson International Edition

ELECTIVE-5

	KCA051: Mobile Computing			
Course Outcome (CO) Bloom's Knowledge Level (K				
	At the end of course, the student will be able to understand			
CO 1	Study and aware fundamentals of mobile computing.			
CO 2	Study and analyze wireless networking protocols, applications and environment.			
CO 3	Understand various data management issues in mobile computing.	K_2		
CO 4	Analyze different type of security issues in mobile computing	K ₄		
G 0 -	environment.			
CO 5	Study, analyze, and evaluate various routing protocols used in mobile computing.	K_1, K_4, K_5		
	DETAILED SYLLABUS	3-0-0		
Unit	Topic	Proposed		
		Lecture		
I	Introduction, Issues in mobile computing, Overview of wireless telephony, Cellular concept, GSM- air interface, channel structure; Location management- HLR-VLR, hierarchical, handoffs; Channel allocation in cellular systems, CDMA, GPRS, MAC for cellular system.	08		
II	Wireless Networking, Wireless LAN Overview- MAC issues, IEEE 802.11, Blue Tooth, Wireless multiple access protocols, TCP over wireless, Wireless applications, Data broadcasting, Mobile IP, WAP-architecture, protocol stack, application environment, applications.	08		
III	Data management issues in mobile computing, data replication for mobile computers, adaptive clustering for mobile wireless networks, File system, Disconnected operations.	08		
IV	Mobile Agents computing, Security and fault tolerance, Transaction processing in mobile computing environment.			
V	Adhoc networks, Localization, MAC issues, Routing protocols, Global state routing (GSR), Destination sequenced distance vector routing (DSDV), Dynamic source routing (DSR), Adhoc on demand distance vector routing (AODV), Temporary ordered routing algorithm (TORA), QoS in Adhoc Networks, applications	08		

- 1. Schiller J., "Mobile Communications", Pearson
- 2. Upadhyaya S. and Chaudhury A., "Mobile Computing", Springer
- 3. Kamal R., "Mobile Computing", Oxford University Press.
- 4. Talukder A. K. and Ahmed H., "Mobile Computing Technology, Applications and Service Creation", McGraw Hill Education
- 5. Garg K., "Mobile Computing Theory and Practice", Pearson.
- 6. Kumar S., "Wireless and Mobile Communication", New Age International Publishers
- 7. Manvi S. S. and Kakkasageri M. S., "Wireless and Mobile Networks- Concepts and Protocols", Wiley India Pvt. Ltd.

	KCA052: Computer Graphics and Animation				
	Course Outcome (CO) Bloom's Knowledge Level (KL)				
	At the end of course, the student will be able to understand	<u> </u>			
CO 1	Understand the graphics hardware used in field of computer graphics.	K_2			
CO 2	Understand the graphics hardware used in field of computer graphics. Understand the concept of graphics primitives such as lines and circle based on				
002	different algorithms.	K_2, K_4			
CO 3	Apply the 2D graphics transformations, composite transformation and Clipping				
	concepts.				
CO 4	Apply the concepts and techniques used in 3D computer graphics, including				
	viewing transformations, projections, curve and hidden surfaces.				
CO 5	Perform the concept of multimedia and animation in real life.				
	DETAILED SYLLABUS				
Unit	Topic	3-0-0 Proposed			
	1	Lecture			
I	Introduction and Line Generation: Types of computer graphics, Graphic	08			
	Displays- Random scan displays, Raster scan displays, Frame buffer and video				
	controller, Points and lines, Line drawing algorithms, Circle generating				
	algorithms, Mid-point circle generating algorithm, and parallel version of these				
	algorithms.				
II	Transformations: Basic transformation, Matrix representations and	08			
	homogenous coordinates, Composite transformations, Reflections and				
	shearing.				
	Windowing and Clipping: Viewing pipeline, Viewing transformations, 2-D				
	Clipping algorithms- Line clipping algorithms such as Cohen Sutherland line				
	clipping algorithm, Liang Barsky algorithm, Line clipping against non				
	rectangular clip windows; Polygon clipping – Sutherland Hodgeman polygon				
TTT	clipping, Weiler and Atherton polygon clipping, Curve clipping, Text clipping.	00			
III	Three Dimensional: 3-D Geometric Primitives, 3-D Object representation, 3-	08			
	D Transformation, 3-D viewing, projections, 3-D Clipping.				
	Curves and Surfaces: Quadric surfaces, Spheres, Ellipsoid, Blobby objects, Introductory concepts of Spline, Bspline and Bezier curves and surfaces.				
IV	Hidden Lines and Surfaces: Back Face Detection algorithm, Depth buffer	08			
1 1	method, A- buffer method, Scan line method, basic illumination models—	Vo			
	Ambient light, Diffuse reflection, Specular reflection and Phong model,				
	Combined approach, Warn model, Intensity Attenuation, Color consideration,				
	Transparency and Shadows.				
V	Multimedia Systems: Design Fundamentals, Back ground of Art, Color theory	08			
	overview, Sketching & illustration, Storyboarding, different tools for				
	animation.				
	Animation: Principles of Animations, Elements of animation and their use,				
	Power of Motion, Animation Techniques, Animation File Format, Making				
	animation for Rolling Ball, making animation for a Bouncing Ball, Animation				
	for the web, GIF, Plugins and Players, Animation tools for World Wide Web.				
Cuara	ted Dandings.				

- 1. Hearn D. and Baker M. P., "Computer Graphics C Version", Pearson Education
- 2. Foley, Vandam, Feiner, Hughes, "Computer Graphics principle", Pearson Education.
- 3. Rogers, "Procedural Elements of Computer Graphics", McGraw Hill
- 4. Newman W. M., Sproull R. F., "Principles of Interactive computer Graphics", McGraw Hill.
- 5. Sinha A. N. and Udai A. D.," Computer Graphics", McGraw Hill.
- 6. Mukherjee, "Fundamentals of Computer graphics & Multimedia", PHI Learning Private Limited.
- 7. Vaughan T., "Multimedia, Making IT Work", Tata McGraw Hill.

	KCA053: Natural Language Processing				
Course Outcome (CO) Bloom's Knowledge Level (KI			L)		
	At the end of course, the student will be able to understand				
CO 1	Study and understand basic concep-	ts, background and representations of	K_1, K_2		
	natural language.				
CO 2	Analyze various real-world applications of NLP.		K_4		
CO 3	Apply different parsing techniques in NLP.		K_3		
CO 4	Understand grammatical concepts and apply them in NLP.		K_2, K_3		
CO 5	Apply various statistical and probabi	llistic grammar methods to handle and	K_3, K_5		
evaluate ambiguity.					
DETAILED SYLLABUS			3-0-0		
Unit	Topic		Proposed		
			Lecture		
I		Inderstanding: The study of Language,	08		
		guage Understanding Systems, Different			
		tations and Understanding, Organization			
		Systems, Linguistic Background: An			
	outline of English syntax.				
II		ge representation, some applications like	08		
	machine translation, database interface				
III		and sentence Structure, Top-Down and	08		
	Bottom-Up Parsers, Transition Network Grammars, Top- Down Chart Parsing.				
		nmars: Basic Feature system for English,			
		con, Parsing with Features, Augmented			
137	Transition Networks.	Associations Works and Work Discours	00		
IV		: Auxiliary Verbs and Verb Phrases,	08		
		e, Handling questions in Context-Free			
	Parser.	ing, Encoding uncertainty, Deterministic			
V	Ambiguity Resolution: Statistical	Methods, Probabilistic Language	08		
·	Processing, Estimating Probabilities	,	Vo		
		ntext-Free Grammars, Best First Parsing.			
		rd senses and Ambiguity, Encoding			
	Ambiguity in Logical Form.	id senses and Amorgany, Encouning			
Cuana	Amorganty in Logical Form.				

- 1. Akshar Bharti, Vineet Chaitanya and Rajeev Sangal, "NLP: A Paninian Perspective", Prentice Hall, New Delhi.
- 2. James Allen, "Natural Language Understanding", Pearson Education.
- 3. D. Jurafsky, J. H. Martin, "Speech and Language Processing", Pearson Education.
- 4. L. M. Ivansca, S. C. Shapiro, "Natural Language Processing and Language Representation", AAAI Press, 2000.
- 5. T. Winograd, Language as a Cognitive Process, Addison-Wesley.

KCA054: Machine Learning Techniques				
Course Outcome (CO) Bloom's Kno		owledge Level (L)		
At the	end of course, the student will be able:	,		
CO 1	To understand the need for machine learning for various problem solving	K_1, K_2		
CO 2	To understand a wide variety of learning algorithms and how to evaluate models generated from data	K_1, K_3		
CO 3		K_2, K_3		
CO 4	To design appropriate machine learning algorithms and apply the algorithms to a real-world problems	K_4 , K_6		
CO 5	To ontimize the models learned and report on the expected accuracy that can	K_{4}, K_{5}		
	DETAILED SYLLABUS	3-0-0		
Unit	Торіс	Proposed Lecture		
Ι	INTRODUCTION – Learning, Types of Learning, Well defined learning problems, Designing a Learning System, History of ML, Introduction of Machine Learning Approaches – (Artificial Neural Network, Clustering, Reinforcement Learning, Decision Tree Learning, Bayesian networks, Support Vector Machine, Genetic Algorithm), Issues in Machine Learning and Data Science Vs Machine Learning;	08		
II	REGRESSION: Linear Regression and Logistic Regression BAYESIAN LEARNING - Bayes theorem, Concept learning, Bayes Optimal Classifier, Naïve Bayes classifier, Bayesian belief networks, EM algorithm. SUPPORT VECTOR MACHINE: Introduction, Types of support vector kernel - (Linear kernel, polynomial kernel, and Gaussiankernel), Hyperplane - (Decision surface), Properties of SVM, and Issues in SVM.	08		
III	DECISION TREE LEARNING - Decision tree learning algorithm, Inductive bias, Inductive inference with decision trees, Entropy and information theory, Information gain, ID-3 Algorithm, Issues in Decision tree learning. INSTANCE-BASED LEARNING – k-Nearest Neighbour Learning, Locally Weighted Regression, Radial basis function networks, Case-based learning.	08		
IV	ARTIFICIAL NEURAL NETWORKS – Perceptron's, Multilayer perceptron, Gradient descent and the Delta rule, Multilayer networks, Derivation of Backpropagation Algorithm, Generalization, Unsupervised Learning – SOM Algorithm and its variant; DEEP LEARNING - Introduction, concept of convolutional neural network, Types of layers – (Convolutional Layers, Activation function, pooling, fully connected), Concept of Convolution (1D and 2D) layers, Training of network, Case study of CNN for eg on Diabetic Retinopathy, Building a smart speaker, Self-deriving car etc.	08		
V	REINFORCEMENT LEARNING-Introduction to Reinforcement Learning, Learning Task, Example of Reinforcement Learning in Practice, Learning Models for Reinforcement – (Markov Decision process, Q Learning - Q Learning function, Q Learning Algorithm), Application of Reinforcement Learning, Introduction to Deep Q Learning.	08		

GENETIC ALGORITHMS: Introduction, Components, GA cycle of reproduction, Crossover, Mutation, Genetic Programming, Models of Evolution and Learning, Applications.

Text books:

- 1. Tom M. Mitchell, —Machine Learning, McGraw-Hill Education (India) Private Limited, 2013.
- 2. Ethem Alpaydin, —Introduction to Machine Learning (Adaptive Computation and Machine Learning), MIT Press 2004.
- 3. Stephen Marsland, —Machine Learning: An Algorithmic Perspective, CRC Press, 2009.
- 4. Bishop, C., Pattern Recognition and Machine Learning. Berlin: Springer-Verlag.
- 5. M. Gopal, "Applied Machine Learning", McGraw Hill Education

KCA055: Quantum Computing					
Course Outcome (CO) Bloom's Knowledge L					
	At the end of course, the student will be able to understand				
CO 1	Distinguish problems of different computational complexity and explain why certain problems are rendered tractable by quantum computation with reference to the relevant concepts in quantum theory.	K_1, K_2			
CO 2	Demonstrate an understanding of a quantum computing algorithm by simulating it on a classical computer, and state some of the practical challenges in building a quantum computer.	K_2 , K_3			
CO 3	Contribute to a medium-scale application program as part of a co-operative team, making use of appropriate collaborative development tools (such as version control systems).	K_2, K_3			
CO 4	Produce code and documentation that is comprehensible to a group of different programmers and present the theoretical background and results of a project in written and verbal form.	K ₃ , K ₄			
CO 5	Apply knowledge, skills, and understanding in executing a defined project of research, development, or investigation and in identifying and implementing relevant outcomes.	K ₃ , K ₆			
DETAILED SYLLABUS		3-0-0			
Unit	Торіс	Proposed Lecture			
I	Fundamental Concepts: Global Perspectives, Quantum Bits, Quantum Computation, Quantum Algorithms, Quantum Information, Postulates of Quantum Mechanisms.	08			
II	Quantum Computation : Quantum Circuits – Quantum algorithms, Single Orbit operations, Control Operations, Measurement, Universal Quantum Gates, Simulation of Quantum Systems, Quantum Fourier transform, Phase estimation, Applications, Quantum search algorithms – Quantum counting – Speeding up the solution of NP – complete problems – Quantum Search for an unstructured database.	08			
Ш	Quantum Computers: Guiding Principles, Conditions for Quantum Computation, Harmonic Oscillator Quantum Computer, Optical Photon Quantum Computer – Optical cavity Quantum electrodynamics, Ion traps, Nuclear Magnetic resonance	08			
IV	Quantum Information: Quantum noise and Quantum Operations – Classical Noise and Markov Processes, Quantum Operations, Examples of Quantum noise and Quantum Operations – Applications of Quantum operations, Limitations of the Quantum operations formalism, Distance Measures for Quantum information.	08			
V	Quantum Error Correction: Introduction, Shor code, Theory of Quantum Error – Correction, Constructing Quantum Codes, Stabilizer codes, Fault – Tolerant Quantum Computation, Entropy and information – Shannon Entropy, Basic properties of Entropy, Von Neumann, Strong Sub Additivity, Data Compression, Entanglement as a physical resource.	08			

Text books:

- 1. Micheal A. Nielsen. &Issac L. Chiang, "Quantum Computation and Quantum Information", Cambridge University Press, Fint South Asian edition, 2002.
- 2. Eleanor G. Rieffel , Wolfgang H. Polak , "Quantum Computing A Gentle Introduction" (Scientific and Engineering Computation) Paperback Import,
- 3 Oct 2014 3. Computing since Democritus by Scott Aaronson
- 4. Computer Science: An Introduction by N. DavidMermin 5. Yanofsky's and Mannucci, Quantum Computing for Computer Scientists.